MicroRNA expression profiling of NGF-treated PC12 cells revealed a critical role for miR-221 in neuronal differentiation
Ontology highlight
ABSTRACT: MicroRNAs (miRNAs) are small non-coding RNAs that control protein expression through translational inhibition or mRNA degradation. MiRNAs have been implicated in diverse biological processes such as development, proliferation, apoptosis and differentiation. Upon treatment with nerve growth factor (NGF), rat pheochromocytoma PC12 cells elicit neurite outgrowth and differentiae into neuron-like cells. NGF plays a critical role not only in neuronal differentiation but also in protection against apoptosis. In an attempt to identify NGF-regulated miRNAs in PC12 cells, we performed miRNA microarray analysis using total RNAs harvested from cells treated with NGF. In response to NGF treatment, expression of 8 and 12 miRNAs were up- and down-regulated, respectively. Quantitative RT-PCR analysis confirmed increased expression of miR-221, miR-181a* and miR-326, and decreased expression of miR-143, miR-210 and miR-532-3p after NGF treatment, among which miR-221 was drastically up-regulated. Overexpression of miR-221 induced neurite outgrowth of PC12 cells in the absence of NGF treatment, and also enhanced neurite outgrowth caused by low-dose NGF. More importantly, knockdown of miR-221 by antagomir attenuated NGF-mediated neurite outgrowth. Finally, miR-221 decreased expression of Foxo3a and Apaf-1, both of which are involved in apoptosis in PC12 cells. Our results indicate that miR-221 plays a critical role for neuronal differentiation as well as protection against apoptosis in PC12 cells.
ORGANISM(S): Rattus norvegicus
PROVIDER: GSE32122 | GEO | 2012/05/16
SECONDARY ACCESSION(S): PRJNA147443
REPOSITORIES: GEO
ACCESS DATA