Expression data from polycystic kidney disease susceptible and resistant rat strains
Ontology highlight
ABSTRACT: To facilitate the search for genetic modifiers that modulate ARPKD disease progression and severity, we sought to generate a congenic rat model that carries the PCK Pkhd1 mutation but is resistant to the development of ARPKD. We transferred the Pkhd1 mutation from the PCK rat onto the genetic background of the FHH (Fawn-Hooded Hypertensive) rat. This newly developed strain, called FHH.Pkhd1, showed significant amelioration of renal disease, and delayed onset of biliary abnormalities. To initiate the exploration for genes and pathways that modulate susceptibility to renal cystogenesis, we investigated transcriptional changes in kidneys from PCK, SD, FHH and FHH.Pkhd1 rats by microarray analysis.
Project description:To facilitate the search for genetic modifiers that modulate ARPKD disease progression and severity, we sought to generate a congenic rat model that carries the PCK Pkhd1 mutation but is resistant to the development of ARPKD. We transferred the Pkhd1 mutation from the PCK rat onto the genetic background of the FHH (Fawn-Hooded Hypertensive) rat. This newly developed strain, called FHH.Pkhd1, showed significant amelioration of renal disease, and delayed onset of biliary abnormalities. To initiate the exploration for genes and pathways that modulate susceptibility to renal cystogenesis, we investigated transcriptional changes in kidneys from PCK, SD, FHH and FHH.Pkhd1 rats by microarray analysis. Both kidneys were harvested from 6 animals for each strain; SD, FHH, PCK, FHH.Pkhd1 (FHH.PCK-(D9Rat35-D9Rat70)/Mcwi, RGD ID 5147594) at 30 days of age. The kidneys were bisected and stored in RNAlater at 4C for 24hrs. RNA was extracted using the Trizol (Invitrogen) method according to manufacturer’s instructions. RNA from each strain was pooled together, reverse transcribed, and hybridized to three Affymetrix Rat 230 arrays (Affymetrix).
Project description:Autosomal recessive polycystic kidney disease (ARPKD) is caused by mutations in the PKHD1 gene in both humans and the orthologous PCK rat model. Although ARPKD results solely from PKHD1 mutations, the disease onset and severity are highly variable, indicating that other unknown genetic risk factor(s) modify ARPKD-associated phenotypes. To identify genetic modifiers of ARPKD severity, we created two genetically distinct Pkhd1 congenic rat strains on the Fawn-Hooded Hypertensive (FHH) and the Dahl S (SS) rat backgrounds (denoted FHH.Pkhd1 and SS.Pkhd1, respectively) that harbor the PCK-derived Pkhd1 allele. The FHH.Pkhd1 and SS.Pkhd1 strains had lower renal cyst formation at 30 days-of-age (5±2% and 8±2% cystic, respectively; P<0.001) compared to the PCK kidneys (26±4% cystic), which coincided with significantly reduced kidney weights in the FHH.Pkhd1 and SS.Pkhd1. Liver cyst formation and liver weight did not differ between PCK, FHH.Pkhd1, and SS.Pkhd1. These data indicated that the PCK genome harbors genetic modifier(s) of ARPKD severity that are not present in the FHH and SS genomes. Using high density SNP array genotyping and microarray expression analysis, we identified 50 potential modifiers of ARPKD severity in the PCK rat. Of these candidates, a damaging nonsynonymous variant in Nphp4 stood out as the most likely candidate based on variant segregation, protein modeling, network analysis, and gene ontology. Nphp4 is widely associated with the autosomal recessive cilliopathy and nephronopthisis, but had not been previously implicated in the molecular or cellular pathophysiology of ARPKD. Collectively, these data provide genetic evidence of disease modifier(s) in the PCK model of ARPKD and prioritized multiple candidates, including NPHP4, for further investigation in ARPKD pathogenesis.
Project description:Autosomal recessive polycystic kidney disease (ARPKD) is caused by mutations in the PKHD1 gene in both humans and the orthologous PCK rat model. Although ARPKD results solely from PKHD1 mutations, the disease onset and severity are highly variable, indicating that other unknown genetic risk factor(s) modify ARPKD-associated phenotypes. To identify genetic modifiers of ARPKD severity, we created two genetically distinct Pkhd1 congenic rat strains on the Fawn-Hooded Hypertensive (FHH) and the Dahl S (SS) rat backgrounds (denoted FHH.Pkhd1 and SS.Pkhd1, respectively) that harbor the PCK-derived Pkhd1 allele. The FHH.Pkhd1 and SS.Pkhd1 strains had lower renal cyst formation at 30 days-of-age (5±2% and 8±2% cystic, respectively; P<0.001) compared to the PCK kidneys (26±4% cystic), which coincided with significantly reduced kidney weights in the FHH.Pkhd1 and SS.Pkhd1. Liver cyst formation and liver weight did not differ between PCK, FHH.Pkhd1, and SS.Pkhd1. These data indicated that the PCK genome harbors genetic modifier(s) of ARPKD severity that are not present in the FHH and SS genomes. Using high density SNP array genotyping and microarray expression analysis, we identified 50 potential modifiers of ARPKD severity in the PCK rat. Of these candidates, a damaging nonsynonymous variant in Nphp4 stood out as the most likely candidate based on variant segregation, protein modeling, network analysis, and gene ontology. Nphp4 is widely associated with the autosomal recessive cilliopathy and nephronopthisis, but had not been previously implicated in the molecular or cellular pathophysiology of ARPKD. Collectively, these data provide genetic evidence of disease modifier(s) in the PCK model of ARPKD and prioritized multiple candidates, including NPHP4, for further investigation in ARPKD pathogenesis. In this study, we used microarray to analyze transcript expression in the kidneys of 30 day old SD (n=4), PCK (n=4), FHH (n=4), FHH.Pkhd1 (n=4), SS (n=4), and SS.Pkhd1 (n=4). Samples were pooled and the pooled samples were run in triplicate. The 30 day timepoint was chosen because the differences in renal cyst formation between PCK, FHH.Pkhd1, and SS.Pkhd1 were greatest at this timepoint. To account for genetic strain differences that do not contribute to ARPKD severity, gene expression of each cystic rat strain was compared to its parental strain.
Project description:Examination of gene expression changes during hypoxia of the Fawn Hooded Hypertensive (FHH) rat and FHH12BN consomic rat. FHH12BN rats are derived from introgression chromosome 12 from Brown Norway (BN) rat into the FHH genetic background
Project description:Examination of gene expression changes during hypoxia of the fawn-hooded hypertensive (FHH) rat and FHH12BN consomic rat. FHH12BN rats are derived from introgression of chromosome 12 from the Brown Norway (BN) rat into the FHH genetic background.
Project description:Examination of gene expression changes during hypoxia of the Fawn Hooded Hypertensive (FHH) rat and FHH12BN consomic rat. FHH12BN rats are derived from introgression of chromosome 12 and from the Brown Norway (BN) rat into the FHH genetic background.
Project description:Microarray was performed on kidneys of Fawn-Hooded Hypertensive (FHH) rats in order to elucidate the so-called "beneficial" effect of perinatal treatment with PDTC.
Project description:Examination of gene expression associated with hypoxia treatment of rat strains FHH ( Fawn Hooded Hypertensive) and BN(Brown Norway).
Project description:Examination of gene expression associated with hypoxia treatment of rat strains FHH (Fawn Hooded Hypertensive) and BN (Brown Norway).
Project description:Examination of gene expression associated with hypoxia treatment of rat strains FHH (Fawn Hooded Hypertensive) and BN (Brown Norway).