Transcriptomics

Dataset Information

0

Anaerobic oxidation of benzene by Geobacter metallireducens


ABSTRACT: Anaerobic activation of benzene is expected to represent a novel biochemistry of environmental significance but research into the mechanisms has been stymied by a lack of a genetically tractable pure culture which unequivocally does not use molecular oxygen to activate benzene. Geobacter metallireducens grew in a medium in which benzene was the sole electron donor and Fe(III) was the sole electron acceptor with a stoichiometry of benzene loss and Fe(III) reduction consistent with benzene oxidation to carbon dioxide coupled with Fe(III) reduction. Phenol labeled with 18O was produced when the medium was labeled with H218O, as expected for a true anaerobic conversion of benzene to phenol. Gene expression patterns indicated that benzene was metabolized through a phenol intermediate rather than benzoate or toluene. Deletion of ppcB, which encodes a subunit of the phenylphosphate carboxylase, an enzyme required for phenol metabolism, inhibited metabolism of benzene. Deleting genes specific for benzoate or toluene metabolism did not. Comparison of gene expression patterns in cells grown on benzene versus cells grown on phenol revealed genes specifically expressed in benzene-grown cells. Deletion of one of these, Gmet_3376, inhibited anaerobic benzene oxidation, but not the metabolism of phenol, benzoate, or toluene. The availability of a genetically tractable pure culture that can anaerobically convert benzene to phenol with oxygen derived from water should significantly accelerate elucidation of the mechanisms by which benzene can be activated in the absence of molecular oxygen.

ORGANISM(S): Geobacter metallireducens

PROVIDER: GSE33794 | GEO | 2013/04/30

SECONDARY ACCESSION(S): PRJNA148109

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2013-04-30 | E-GEOD-33794 | biostudies-arrayexpress
2011-07-20 | GSE30798 | GEO
2011-07-20 | GSE28549 | GEO
2011-07-20 | GSE30801 | GEO
2011-07-20 | GSE30799 | GEO
2011-07-19 | E-GEOD-28549 | biostudies-arrayexpress
2011-07-19 | E-GEOD-30799 | biostudies-arrayexpress
2011-07-19 | E-GEOD-30801 | biostudies-arrayexpress
2011-07-19 | E-GEOD-30798 | biostudies-arrayexpress
2011-07-19 | E-GEOD-30796 | biostudies-arrayexpress