Comparison and analysis of gene expression between cattle and buffalo after infection with schistosoma japonicum
Ontology highlight
ABSTRACT: The microarray analysis of gene expression difference between cattle and buffalo, provide us a profiling as a new platform to discover the difference between their compatibility with schistosoma japonicum.
Project description:To investigate microRNAs (miRNAs) involving in the regulation of the schistosome development and survival, we compared miRNA expression profiles of adult Schistosoma japonicum derived from yellow cattle and water buffalo using high-throughput sequencing with Illumina Hiseq Xten.
Project description:The microarray analysis of gene expression difference between cattle,buffalo and goat,provide us a profiling as a new platform to discover the difference between their compatibility
Project description:Long non-coding RNAs (lncRNAs) have been identified in various tissues and cell types from human, monkey, porcine and mouse. However, expression profile of lncRNAs across Guangxi native cattle and swamp buffalo muscle development has never been investigated. Here, we examine the expression of lncRNA in cattle and buffalo muscle at adult stage(12 months), exhibiting the first report of lncRNA in the Guangxi native cattle and swamp buffalo muscle development of a large animal. 16,236 lncRNA candidates were obtained from buffalo skeletal muscle samples, of which a number of lncRNAs were highly abundant, and 2,161 lncRNAs were differentially expressed between buffalo and cattle. Real-time quantitative PCR (qPCR) analysis confirmed the expression profile of these lncRNAs, including several highly abundant lncRNAs, and a subset of differently expressed lncRNAs according to the high-throughput RNA sequencing (RNA-seq) data. These results indicate that abundant lncRNA is differentially expressed in bovine muscle, indicating important and diverse functions in mammalian muscle development.
Project description:Background: Intramuscular fat (IMF) content is highly valued as it improves meat product quality by enhancing taste, juiciness, and tenderness. IMF content can be significantly different between breeds. Thought many lipid metabolism-related genes are stated to be associated with IMF deposition, the molecular mechanism of IMF deposition is still poorly understood. To date, no gene or mutation loci responsible for the difference of IMF content among cattle breeds has been identified. To identify transcripts with potential regulatory role in lipid accumulated in muscle tissue, RNA sequencing was performed to compare the mRNAs, lncRNAs, and circRNAs expression patterns in the longissimus dorsi muscle and back fat between Chinese buffalo and cattle. Results: A total of 12 cDNA libraries were constructed. A total of 925,441,106 and 512,507,068 raw reads were obtained from buffalo and cattle, respectively. After filtering the adaptor and low quality reads, 909,040,352 and 491,967,820 clean reads were retained. In total, 19,917 mRNAs, 43,975 lncRNAs, and 10,701 circRNAs were identified in buffalo and 19,383 mRNAs, 8,265 lncRNAs, and 18,535 circRNAs were identified in cattle.
Project description:The gogal of this study is to use RNA-Seq to systematically investigate the dynamics of the liver transcriptome over Schistosoma japonicum infection.