Project description:Brucella spp. cause chronic zoonotic disease often affecting individuals and animals in impoverished economic or public health conditions; however, these bacteria do not have obvious virulence factors. Restriction of iron availability to pathogens is an effective strategy of host defense. For brucellae, virulence depends on the ability to survive and replicate within the host cell where iron is an essential nutrient for the growth and survival of both mammalian and bacterial cells. Iron is a particularly scarce nutrient for bacteria with an intracellular lifestyle. Brucella melitensis and Brucella canis share ~99% of their genomes but differ in intracellular lifestyles. To identify differences, gene transcription of these two pathogens was examined during infection of murine macrophages and compared to broth grown bacteria. Transcriptome analysis of B. melitensis and B. canis revealed differences of genes involved in iron transport. Gene transcription of the TonB, enterobactin, and ferric anguibactin transport systems was increased in B. canis but not B. melitensis during infection of macrophages. The data suggest differences in iron requirements that may contribute to differences observed in the lifestyles of these closely related pathogens. The initial importance of iron for B. canis but not for B. melitensis helps elucidate differing intracellular survival strategies for two closely related bacteria and provides insight for controlling these pathogens.
Project description:Brucella melitensis and Brucella canis differ by ~75 genes yet B. melitensis is highly virulent for humans while B. canis is considered rarely pathogenic. No identified bacterial factors or mechanisms account for this difference in virulence. To identify functional differences of these two bacteria, gene transcription was examined during infection of murine macrophages and compared to bacteria grown in broth. Our analysis identified transcriptional differences in macrophage infection between B. melitensis and B. canis genes involved in iron transport. Increased transcription of the TonB, enterobactin, and ferric anguibactin transport systems were observed in B. canis but not B. melitensis during infection of macrophages. Therefore, iron appears as an important requirement during the first 24h of infection by B. canis but not for B. melitensis and provides strategies for controlling these pathogens.
Project description:Brucella melitensis and Brucella canis differ by ~75 genes yet B. melitensis is highly virulent for humans while B. canis is considered rarely pathogenic. No identified bacterial factors or mechanisms account for this difference in virulence. To identify functional differences of these two bacteria, gene transcription was examined during infection of murine macrophages and compared to bacteria grown in broth. Our analysis identified transcriptional differences in macrophage infection between B. melitensis and B. canis genes involved in iron transport. Increased transcription of the TonB, enterobactin, and ferric anguibactin transport systems were observed in B. canis but not B. melitensis during infection of macrophages. Therefore, iron appears as an important requirement during the first 24h of infection by B. canis but not for B. melitensis and provides strategies for controlling these pathogens.
Project description:Brucella melitensis and Brucella canis differ by ~75 genes yet B. melitensis is highly virulent for humans while B. canis is considered rarely pathogenic. No identified bacterial factors or mechanisms account for this difference in virulence. To identify functional differences of these two bacteria, gene transcription was examined during infection of murine macrophages and compared to bacteria grown in broth. Our analysis identified transcriptional differences in macrophage infection between B. melitensis and B. canis genes involved in iron transport. Increased transcription of the TonB, enterobactin, and ferric anguibactin transport systems were observed in B. canis but not B. melitensis during infection of macrophages. Therefore, iron appears as an important requirement during the first 24h of infection by B. canis but not for B. melitensis and provides strategies for controlling these pathogens.
Project description:Brucella melitensis and Brucella canis differ by ~75 genes yet B. melitensis is highly virulent for humans while B. canis is considered rarely pathogenic. No identified bacterial factors or mechanisms account for this difference in virulence. To identify functional differences of these two bacteria, gene transcription was examined during infection of murine macrophages and compared to bacteria grown in broth. Our analysis identified transcriptional differences in macrophage infection between B. melitensis and B. canis genes involved in iron transport. Increased transcription of the TonB, enterobactin, and ferric anguibactin transport systems were observed in B. canis but not B. melitensis during infection of macrophages. Therefore, iron appears as an important requirement during the first 24h of infection by B. canis but not for B. melitensis and provides strategies for controlling these pathogens.
Project description:Brucella melitensis and Brucella canis differ by ~75 genes yet B. melitensis is highly virulent for humans while B. canis is considered rarely pathogenic. No identified bacterial factors or mechanisms account for this difference in virulence. To identify functional differences of these two bacteria, gene transcription was examined during infection of murine macrophages and compared to bacteria grown in broth. Our analysis identified transcriptional differences in macrophage infection between B. melitensis and B. canis genes involved in iron transport. Increased transcription of the TonB, enterobactin, and ferric anguibactin transport systems were observed in B. canis but not B. melitensis during infection of macrophages. Therefore, iron appears as an important requirement during the first 24h of infection by B. canis but not for B. melitensis and provides strategies for controlling these pathogens. Comparison of total bacterial RNA from Brucella canis infected murine macrophages to broth grown bacteria
Project description:Brucella melitensis and Brucella canis differ by ~75 genes yet B. melitensis is highly virulent for humans while B. canis is considered rarely pathogenic. No identified bacterial factors or mechanisms account for this difference in virulence. To identify functional differences of these two bacteria, gene transcription was examined during infection of murine macrophages and compared to bacteria grown in broth. Our analysis identified transcriptional differences in macrophage infection between B. melitensis and B. canis genes involved in iron transport. Increased transcription of the TonB, enterobactin, and ferric anguibactin transport systems were observed in B. canis but not B. melitensis during infection of macrophages. Therefore, iron appears as an important requirement during the first 24h of infection by B. canis but not for B. melitensis and provides strategies for controlling these pathogens. comparison of total bacterial RNA from Brucella canis infected murine macrophages and broth grown bacteria
Project description:Brucella melitensis and Brucella canis differ by ~75 genes yet B. melitensis is highly virulent for humans while B. canis is considered rarely pathogenic. No identified bacterial factors or mechanisms account for this difference in virulence. To identify functional differences of these two bacteria, gene transcription was examined during infection of murine macrophages and compared to bacteria grown in broth. Our analysis identified transcriptional differences in macrophage infection between B. melitensis and B. canis genes involved in iron transport. Increased transcription of the TonB, enterobactin, and ferric anguibactin transport systems were observed in B. canis but not B. melitensis during infection of macrophages. Therefore, iron appears as an important requirement during the first 24h of infection by B. canis but not for B. melitensis and provides strategies for controlling these pathogens. Comparison of total bacterial RNA from Brucella canis infected murine macrophages at 5 and 24h
Project description:Brucella melitensis and Brucella canis differ by ~75 genes yet B. melitensis is highly virulent for humans while B. canis is considered rarely pathogenic. No identified bacterial factors or mechanisms account for this difference in virulence. To identify functional differences of these two bacteria, gene transcription was examined during infection of murine macrophages and compared to bacteria grown in broth. Our analysis identified transcriptional differences in macrophage infection between B. melitensis and B. canis genes involved in iron transport. Increased transcription of the TonB, enterobactin, and ferric anguibactin transport systems were observed in B. canis but not B. melitensis during infection of macrophages. Therefore, iron appears as an important requirement during the first 24h of infection by B. canis but not for B. melitensis and provides strategies for controlling these pathogens. Comparison of total bacterial RNA from Brucella melitensis infected murine macrophages to broth grown bacteria