Project description:Heme Deficient or Wild Type (normal heme) for 6 hrs with iron chelation by BPS. Single Experiment with Probe Reversal 1. GSM78518 (Cy3) vs GSM78519 (Cy5) 2. GSM78520 (Cy3) vs GSM78521 (Cy5)
Project description:Iron plays the central role in the oxygen transport by the erythrocyte as a constituent of heme and hemoglobin. The importance of iron and heme also resides in their regulatory roles during erythroblast maturation. The transcription factor Bach1 may be involved in their regulatory roles since it is inactivated by direct binding of heme. To address whether Bach1 is involved in the responses of erythroblasts to iron status, low iron conditions that induced severe iron deficiency in mice were established. Under iron deficiency, extensive gene expression changes and mitophagy disorder were induced during maturation of erythroblasts. Bach1 mice showed more severe iron deficiency anemia in the developmental phase of mice and a retarded recovery once iron was replenished when compared with wild-type mice. In the absence of Bach1, the expression of globin genes and Hmox1 (encoding heme oxygenase-1) was de-repressed in erythroblasts under iron deficiency, suggesting that Bach1 represses these genes in erythroblasts under iron deficiency to balance the levels of heme and globin. Moreover, an increase in genome-wide DNA methylation was observed in erythroblasts of Bach1–/– mice under iron deficiency. These findings reveal the principle role of iron as a regulator of gene expression in erythroblast maturation and suggest that the iron-heme-Bach1 axis is important for a proper adaptation of erythroblast to iron deficiency to avoid toxic aggregates of non-heme globin.
Project description:Haemophilus influenzae frequently causes human disease, and humans are it’s sole niche. This bacterium has an absolute requirement for both a porphyrin and an iron source for aerobic growth, and exogenous heme can satisfy both requirements. Heme and iron can be acquired by H. influenzae from free or human protein-bound sources. The ability to selectively regulate the acquisition of heme and iron from physiological sources is a major virulence determinant for this microorganism. We utilized whole genome arrays to identify the full set of H. influenzae Rd KW20 iron and heme regulated genes. Condition specific RNA was derived from cells starved for both heme and iron and cells from the same culture 20 mins after the addition of exogenous iron and heme. The results identified 162 genes with a change in transcription ≥ 1.5 fold. Eighty genes in 42 operons were preferentially expressed under iron/ heme starvation; 82 genes in 50 operons were preferentially expressed under iron/heme replete conditions. In each case, all genes contained within the operon were co-regulated. The former group included genes encoding proteins known to have a role in iron and heme uptake as well as several hypothetical ORFs. Enzymes involved in the gluconeogenesis pathway and glycogen biosynthesis were also upregulated. The genes showing increased transcription immediately after the addition of iron and heme primarily encode proteins involved with aerobic respiration and protein biosynthesis, consistent with a relaxation of starvation. Genomic transcriptional profiling provides a more complete understanding of the effects of iron and heme availability. Keywords: Transcription analyses
Project description:Splenic red pulp macrophages (RPM) degrade senescent erythrocytes and recycle heme-associated iron. The transcription factor Spic is selectively expressed by RPM and is required for their development, but the physiologic stimulus inducing Spic is unknown. Here, we report that Spic also regulated the development of F4/80+VCAM+ bone marrow macrophages (BMM) and that Spic expression in BMM and RPM development was induced by heme, a metabolite of erythrocyte degradation. Pathologic hemolysis induced loss of RPM and BMM due to excess heme but induced Spic in monocytes to generate new RPM and BMM. Spic expression in monocytes was constitutively inhibited by the transcriptional repressor Bach1. Heme induced proteasome-dependent BACH1 degradation and rapid Spic derepression. Further, cysteine-proline dipeptide motifs in BACH1 that mediate heme-dependent degradation were necessary for Spic induction by heme. These findings are the first example of metabolite-driven differentiation of a tissue-resident macrophage subset and provide new insight into iron homeostasis. Global gene expression pattern of bone marrow-derived macrophages generated with GM-CSF in vitro and treated with heme were compared to those treated with vehicle at 6 hours, 24 hours, and 72 hours after treatment.
Project description:Obesity is an independent risk factor for colorectal cancer (CRC) although the underlying mechanisms have not been elucidated. Dietary nutrients play a key role in both the prevention and promotion of CRC. While iron is an essential nutrient, excess iron is associated with carcinogenesis. Unlike the systemic compartment, the intestinal lumen lacks an efficient system to regulate iron. In conditions when dietary iron malabsorption and intestinal inflammation co-exist, greater luminal iron is associated with increased intestinal inflammation and a shift in the gut microbiota to more pro-inflammatory strains. However, treatments designed to reduce luminal, including diet restriction and chelation, are associated with lower intestinal inflammation and the colonization of protective gut microbes. Obesity is associated with inflammation-induced, hepcidin-mediated, iron metabolism dysfunction characterized by iron deficiency and dietary iron malabsorption. Obesity is also linked to intestinal inflammation. Currently, there is a fundamental gap in understanding how altered iron metabolism impacts CRC risk in obesity.
The investigator’s objective is to conduct a crossover controlled feeding trial of: 1) a "Typical American" diet with "high" heme/non-heme iron", 2) a "Typical American" diet with "low" iron, and 3) a Mediterranean diet with "high" non heme iron and examine effects on colonic and systemic inflammation and the gut microbiome.
Project description:Splenic red pulp macrophages (RPM) degrade senescent erythrocytes and recycle heme-associated iron. The transcription factor Spic is selectively expressed by RPM and is required for their development, but the physiologic stimulus inducing Spic is unknown. Here, we report that Spic also regulated the development of F4/80+VCAM+ bone marrow macrophages (BMM) and that Spic expression in BMM and RPM development was induced by heme, a metabolite of erythrocyte degradation. Pathologic hemolysis induced loss of RPM and BMM due to excess heme but induced Spic in monocytes to generate new RPM and BMM. Spic expression in monocytes was constitutively inhibited by the transcriptional repressor Bach1. Heme induced proteasome-dependent BACH1 degradation and rapid Spic derepression. Further, cysteine-proline dipeptide motifs in BACH1 that mediate heme-dependent degradation were necessary for Spic induction by heme. These findings are the first example of metabolite-driven differentiation of a tissue-resident macrophage subset and provide new insight into iron homeostasis. Global gene expression pattern of bone marrow-derived macrophages generated with GM-CSF in vitro and treated with heme were compared to those treated with vehicle at 6 hours, 24 hours, and 72 hours after treatment. GM-CSF cultures of Spic(igfp/igfp) BM cells were treated with heme (80 µm) or vehicle after 6 days in culture. Adherent fraction of cells were harvested 6 hours, 24 hours, and 72 hours after treatment and RNA was isolated using an RNeasy mini kit (Qiagen) and submitted for amplification, labeling and hybridization. Expression values were analyzed after RMA quantile normalization using ArrayStar software (DNASTAR).
Project description:Macrophages are central in regulating iron homeostasis. Transcription repressor Bach1 regulates by heme. Here we investigated the relationship between heme-regulated Bach1 and bone marrow derived macrophage. We found that Bach1 KO macrophage showed that up-regulated genes were the process that iron-heme homeostasis and maintenance related gene compared with WT. Our results suggest that Bach1 expression is important to the heme homeostasis and maintenance in the bone marrow derived macrophage.
Project description:Iron and heme play central roles in red blood cell production. However, the mechanisms by which iron and heme levels coordinate erythropoiesis remain incompletely understood. HRI is a heme-regulated kinase that controls translation by phosphorylating eIF2a. Here, we investigate the global impact of iron, heme and HRI on protein translation in vivo in murine primary erythroblasts using ribosome profiling. By defining the underlying changes in translation during iron and HRI deficiencies, we validate known regulators of this process, including Atf4, and identify novel pathways such as co-regulation of ribosomal protein mRNA translation. Surprisingly, we found that heme and HRI pathways, but not iron-regulated pathways, mediate the major protein translational and transcriptional responses to iron deficiency in erythroblasts in vivo and thereby identify previously unappreciated regulators of erythropoiesis. Our genome-wide study uncovers the major impact of the HRI-mediated integrated stress response for the adaptation to iron deficiency anemia.
Project description:Macrophages are central in regulating iron homeostasis. Transcription repressor Bach2 regulates by heme. Here we investigated the relationship between heme-regulated Bach2 and macrophage in bone marrow. We identified RFP-positive and negative macrophage were in bone marrow. We found that RFP-positive macrophage related with iron-heme homeostasis maintenance and RPF-negative population related with immune response. In RFP positive macrophage, we also found the lysosomal heme transporter hrg-1 was Bach2 direct target gene. Our results suggest that the function of the bone marrow macrophage alters according to expression of Bach2.
Project description:Splenic red pulp macrophages (RPM) degrade senescent erythrocytes and recycle heme-associated iron. The transcription factor Spic is selectively expressed by RPM and is required for their development, but the physiologic stimulus inducing Spic is unknown. Here, we report that Spic also regulated the development of F4/80+VCAM+ bone marrow macrophages (BMM) and that Spic expression in BMM and RPM development was induced by heme, a metabolite of erythrocyte degradation. Pathologic hemolysis induced loss of RPM and BMM due to excess heme but induced Spic in monocytes to generate new RPM and BMM. Spic expression in monocytes was constitutively inhibited by the transcriptional repressor Bach1. Heme induced proteasome-dependent BACH1 degradation and rapid Spic derepression. Further, cysteine-proline dipeptide motifs in BACH1 that mediate heme-dependent degradation were necessary for Spic induction by heme. These findings are the first example of metabolite-driven differentiation of a tissue-resident macrophage subset and provide new insight into iron homeostasis. Global gene expression pattern of Spic+ monocytes, Spic- monocytes, and Spic high red pulp macrophages were compared by sorting these cells from Spic(igfp/+) splenocytes and performing microarray-based gene expression profiling.