Genome-wide analysis of gene expression and nuclear/cytoplasmic distribution by compound 1 treatment [293T_NS1-2]
Ontology highlight
ABSTRACT: Analysis of cellular response to DHODH inhibition at gene expression and nuclear/cytoplasmic distribution level. The NS1 protein of influenza virus is a major virulence factor essential for virus replication as it re-directs the host cell to promote viral protein expression. NS1 inhibits cellular mRNA processing and export, down-regulating host gene expression and enhancing viral gene expression. We report here the identification of a non-toxic quinoline carboxylic acid that reverts the inhibition of mRNA nuclear export by NS1, in the absence or presence of virus. This quinoline carboxylic acid directly inhibited dihydroorotate dehydrogenase (DHODH), a host enzyme required for *de novo* pyrimidine biosynthesis, and partially reduced pyrimidine levels. This effect induced NXF1 expression, which promoted mRNA nuclear export in the presence of NS1. The release of NS1-mediated mRNA export block by DHODH inhibition also occurred in the presence of VSV M protein, another viral inhibitor of mRNA export. This reversal of mRNA export block allowed expression of antiviral factors. Thus, pyrimidines play a necessary role in the inhibition of mRNA nuclear export by virulence factors.
Project description:Analysis of cellular response to DHODH inhibition at gene expression level. The NS1 protein of influenza virus is a major virulence factor essential for virus replication as it re-directs the host cell to promote viral protein expression. NS1 inhibits cellular mRNA processing and export, down-regulating host gene expression and enhancing viral gene expression. We report here the identification of a non-toxic quinoline carboxylic acid that reverts the inhibition of mRNA nuclear export by NS1, in the absence or presence of virus. This quinoline carboxylic acid directly inhibited dihydroorotate dehydrogenase (DHODH), a host enzyme required for *de novo* pyrimidine biosynthesis, and partially reduced pyrimidine levels. This effect induced NXF1 expression, which promoted mRNA nuclear export in the presence of NS1. The release of NS1-mediated mRNA export block by DHODH inhibition also occurred in the presence of VSV M protein, another viral inhibitor of mRNA export. This reversal of mRNA export block allowed expression of antiviral factors. Thus, pyrimidines play a necessary role in the inhibition of mRNA nuclear export by virulence factors. Total RNA obtained from HBEC cells subjected to compound 1/compound 1-14 treatment compared to DMSO treatment.
Project description:Analysis of cellular response to DHODH inhibition at gene expression level. The NS1 protein of influenza virus is a major virulence factor essential for virus replication as it re-directs the host cell to promote viral protein expression. NS1 inhibits cellular mRNA processing and export, down-regulating host gene expression and enhancing viral gene expression. We report here the identification of a non-toxic quinoline carboxylic acid that reverts the inhibition of mRNA nuclear export by NS1, in the absence or presence of virus. This quinoline carboxylic acid directly inhibited dihydroorotate dehydrogenase (DHODH), a host enzyme required for *de novo* pyrimidine biosynthesis, and partially reduced pyrimidine levels. This effect induced NXF1 expression, which promoted mRNA nuclear export in the presence of NS1. The release of NS1-mediated mRNA export block by DHODH inhibition also occurred in the presence of VSV M protein, another viral inhibitor of mRNA export. This reversal of mRNA export block allowed expression of antiviral factors. Thus, pyrimidines play a necessary role in the inhibition of mRNA nuclear export by virulence factors. Total RNA obtained from HBEC cells subjected to 3 hours compound 1 treatment compared to DMSO treatment.
Project description:Analysis of cellular response to DHODH inhibition at gene expression and nuclear/cytoplasmic distribution level. The NS1 protein of influenza virus is a major virulence factor essential for virus replication as it re-directs the host cell to promote viral protein expression. NS1 inhibits cellular mRNA processing and export, down-regulating host gene expression and enhancing viral gene expression. We report here the identification of a non-toxic quinoline carboxylic acid that reverts the inhibition of mRNA nuclear export by NS1, in the absence or presence of virus. This quinoline carboxylic acid directly inhibited dihydroorotate dehydrogenase (DHODH), a host enzyme required for *de novo* pyrimidine biosynthesis, and partially reduced pyrimidine levels. This effect induced NXF1 expression, which promoted mRNA nuclear export in the presence of NS1. The release of NS1-mediated mRNA export block by DHODH inhibition also occurred in the presence of VSV M protein, another viral inhibitor of mRNA export. This reversal of mRNA export block allowed expression of antiviral factors. Thus, pyrimidines play a necessary role in the inhibition of mRNA nuclear export by virulence factors. Five million 293T cells were non-transfected or transfected with 6ug of pCAGGS-NS1 for 16h. Then, cells were untreated or treated with compound 1(5uM) for 24h. RNA from total cell extracts or from nuclear or cytoplasmic fractions were obtained
Project description:Analysis of cellular response to DHODH inhibition at gene expression and nuclear/cytoplasmic distribution level. The NS1 protein of influenza virus is a major virulence factor essential for virus replication as it re-directs the host cell to promote viral protein expression. NS1 inhibits cellular mRNA processing and export, down-regulating host gene expression and enhancing viral gene expression. We report here the identification of a non-toxic quinoline carboxylic acid that reverts the inhibition of mRNA nuclear export by NS1, in the absence or presence of virus. This quinoline carboxylic acid directly inhibited dihydroorotate dehydrogenase (DHODH), a host enzyme required for *de novo* pyrimidine biosynthesis, and partially reduced pyrimidine levels. This effect induced NXF1 expression, which promoted mRNA nuclear export in the presence of NS1. The release of NS1-mediated mRNA export block by DHODH inhibition also occurred in the presence of VSV M protein, another viral inhibitor of mRNA export. This reversal of mRNA export block allowed expression of antiviral factors. Thus, pyrimidines play a necessary role in the inhibition of mRNA nuclear export by virulence factors. Five million 293T cells were non-transfected or transfected with 6ug of pCAGGS-NS1 for 16h. Then, cells were untreated or treated with compound 1(5uM) for 24h. RNA from total cell extracts or from nuclear or cytoplasmic fractions were obtained
Project description:Analysis of cellular response to DHODH inhibition at gene expression and nuclear/cytoplasmic distribution level. The NS1 protein of influenza virus is a major virulence factor essential for virus replication as it re-directs the host cell to promote viral protein expression. NS1 inhibits cellular mRNA processing and export, down-regulating host gene expression and enhancing viral gene expression. We report here the identification of a non-toxic quinoline carboxylic acid that reverts the inhibition of mRNA nuclear export by NS1, in the absence or presence of virus. This quinoline carboxylic acid directly inhibited dihydroorotate dehydrogenase (DHODH), a host enzyme required for *de novo* pyrimidine biosynthesis, and partially reduced pyrimidine levels. This effect induced NXF1 expression, which promoted mRNA nuclear export in the presence of NS1. The release of NS1-mediated mRNA export block by DHODH inhibition also occurred in the presence of VSV M protein, another viral inhibitor of mRNA export. This reversal of mRNA export block allowed expression of antiviral factors. Thus, pyrimidines play a necessary role in the inhibition of mRNA nuclear export by virulence factors.
Project description:Analysis of cellular response to DHODH inhibition at gene expression and nuclear/cytoplasmic distribution level. The NS1 protein of influenza virus is a major virulence factor essential for virus replication as it re-directs the host cell to promote viral protein expression. NS1 inhibits cellular mRNA processing and export, down-regulating host gene expression and enhancing viral gene expression. We report here the identification of a non-toxic quinoline carboxylic acid that reverts the inhibition of mRNA nuclear export by NS1, in the absence or presence of virus. This quinoline carboxylic acid directly inhibited dihydroorotate dehydrogenase (DHODH), a host enzyme required for *de novo* pyrimidine biosynthesis, and partially reduced pyrimidine levels. This effect induced NXF1 expression, which promoted mRNA nuclear export in the presence of NS1. The release of NS1-mediated mRNA export block by DHODH inhibition also occurred in the presence of VSV M protein, another viral inhibitor of mRNA export. This reversal of mRNA export block allowed expression of antiviral factors. Thus, pyrimidines play a necessary role in the inhibition of mRNA nuclear export by virulence factors.
Project description:Analysis of cellular response to DHODH inhibition at gene expression and nuclear/cytoplasmic distribution level. The NS1 protein of influenza virus is a major virulence factor essential for virus replication as it re-directs the host cell to promote viral protein expression. NS1 inhibits cellular mRNA processing and export, down-regulating host gene expression and enhancing viral gene expression. We report here the identification of a non-toxic quinoline carboxylic acid that reverts the inhibition of mRNA nuclear export by NS1, in the absence or presence of virus. This quinoline carboxylic acid directly inhibited dihydroorotate dehydrogenase (DHODH), a host enzyme required for *de novo* pyrimidine biosynthesis, and partially reduced pyrimidine levels. This effect induced NXF1 expression, which promoted mRNA nuclear export in the presence of NS1. The release of NS1-mediated mRNA export block by DHODH inhibition also occurred in the presence of VSV M protein, another viral inhibitor of mRNA export. This reversal of mRNA export block allowed expression of antiviral factors. Thus, pyrimidines play a necessary role in the inhibition of mRNA nuclear export by virulence factors. Five million 293T cells were non-transfected or transfected with 6ug of pEGFPN3-M-GFP for 16h. Then, cells were untreated or treated with compound 1(5uM) for 24h. RNA from total cell extracts or from nuclear or cytoplasmic fractions were obtained
Project description:Analysis of cellular response to DHODH inhibition at gene expression level. The NS1 protein of influenza virus is a major virulence factor essential for virus replication as it re-directs the host cell to promote viral protein expression. NS1 inhibits cellular mRNA processing and export, down-regulating host gene expression and enhancing viral gene expression. We report here the identification of a non-toxic quinoline carboxylic acid that reverts the inhibition of mRNA nuclear export by NS1, in the absence or presence of virus. This quinoline carboxylic acid directly inhibited dihydroorotate dehydrogenase (DHODH), a host enzyme required for *de novo* pyrimidine biosynthesis, and partially reduced pyrimidine levels. This effect induced NXF1 expression, which promoted mRNA nuclear export in the presence of NS1. The release of NS1-mediated mRNA export block by DHODH inhibition also occurred in the presence of VSV M protein, another viral inhibitor of mRNA export. This reversal of mRNA export block allowed expression of antiviral factors. Thus, pyrimidines play a necessary role in the inhibition of mRNA nuclear export by virulence factors.
Project description:Analysis of cellular response to DHODH inhibition at gene expression level. The NS1 protein of influenza virus is a major virulence factor essential for virus replication as it re-directs the host cell to promote viral protein expression. NS1 inhibits cellular mRNA processing and export, down-regulating host gene expression and enhancing viral gene expression. We report here the identification of a non-toxic quinoline carboxylic acid that reverts the inhibition of mRNA nuclear export by NS1, in the absence or presence of virus. This quinoline carboxylic acid directly inhibited dihydroorotate dehydrogenase (DHODH), a host enzyme required for *de novo* pyrimidine biosynthesis, and partially reduced pyrimidine levels. This effect induced NXF1 expression, which promoted mRNA nuclear export in the presence of NS1. The release of NS1-mediated mRNA export block by DHODH inhibition also occurred in the presence of VSV M protein, another viral inhibitor of mRNA export. This reversal of mRNA export block allowed expression of antiviral factors. Thus, pyrimidines play a necessary role in the inhibition of mRNA nuclear export by virulence factors.
Project description:Utilisation of RNA-binding proteins (RBPs) is an important aspect of post-transcriptional regulation of viral RNA. Viruses such as influenza A viruses (IAV) interact with RBPs to regulate processes including splicing, nuclear export and trafficking, while also encoding RBPs within their genomes, such as NP and NS1. But with almost 1000 RBPs encoded within the human genome it is still unclear what role, if any, many of these proteins play during viral replication. Using the RNA interactome capture (RIC) technique, we isolated RBPs from IAV infected cells to unravel the RBPome of mRNAs from IAV infected human cells. This led to the identification of one particular RBP, MKRN2, that associates with and positively regulates IAV mRNA. Through further validation, we determined that MKRN2 is involved in the nuclear-cytoplasmic trafficking of IAV mRNA likely through an association with the RNA export mediator GLE1. In the absence of MKRN2, IAV mRNAs accumulate in the nucleus of infected cells, which we suspect leads to their degradation by the nuclear RNA exosome complex. MKRN2, therefore, appears to be required for the efficient nuclear export of IAV mRNAs in human cells.