Project description:Cycloheximide treatment of cotton ovules Keywords: Antibiotic Treatment Single timepoint, 6 slides, 3 Biological replicates, each biological replicate having 2 technical replicates. Dyes were swapped between technical replicates.
Project description:Transcriptomes fiber and ovules were compared by applying serial analysis of gene expression (SAGE). Keywords: Tissue Comparison We constructed three SAGE libraries and sequenced 57321, 64188, and 69104 tags from fiber, Xu-142 ovule (ovule) and fl mutant ovules (fl) respectively of Upland Cotton, Gossypium hirsutum L. cv. Xu-142.
Project description:This experiment describes gene expression after the activation of APETALA1-GR, to study and identify AP1 target genes. We used a 35S:AP1-GR ap1 cal line to induce a synchronized response activating the AP1-GR fusion protein in ap1 cal inflorescence-like meristems through dexamethasone or dexamethasone+cycloheximide treatment. Tissue samples were collected at 3hrs after the treatment. The expression profiles of the individual samples were then analyzed by gene expression profiling using whole-genome oligonucleotide arrays (Agilent, custom-commercial).
2011-01-01 | GSE20175 | GEO
Project description:Transcriptomic analysis of phytosphingosine treatment on cotton ovules
Project description:Cotton is one of the most commercially important Fiber crops in the world and used as a source for natural textile Fiber and cottonseed oil. The fuzzless-lintless ovules of cotton mutants are ideal source for identifying genes involved in Fiber development by comparing with Fiber bearing ovules of wild-type. To decipher molecular mechanisms involved in Fiber cell development, transcriptome analysis has been carried out by comparing G. hirsutum cv. MCU5 (wild-type) with its fuzzless-lintless mutant (MUT). Cotton bolls were collected at Fiber initiation (0 dpa/days post anthesis), elongation (5, 10 and 15 dpa) and secondary cell wall synthesis stage (20 dpa) and gene expression profiles were analyzed in wild-type and MUT using Affymetrix cotton GeneChip Genome array.
Project description:Cotton fibers are seed trichomes, and their development undergoes a series of rapid and dynamic changes from fiber cell initiation, elongation to primary and secondary wall biosynthesis and fiber maturation. Previous studies showed that cotton homologues encoding putative MYB transcription factors and phytohormone responsive factors were induced during early stages of ovule and fiber development. Many of these factors are targets of microRNAs (miRNAs). miRNAs are ~21 nucleotide (nt) RNA molecules derived from non-coding endogenous genes and mediate target regulation by mRNA degradation or translational repression. Here we show that among ~4-million reads of small RNAs derived from the fiber and non-fiber tissues, the 24-nt small RNAs were most abundant and were highly enriched in ovules and fiber-bearing ovules relative to leaves. A total of 28 putative miRNAs families, including 25 conserved and 3 novel miRNAs were identified in at least one of the cotton tissues examined. Thirty-two pre-miRNA hairpins representing 19 unique families were detected in Cotton Gene Indices version 9 (CGI9) using mirCheck. Sequencing, miRNA microarray, and small RNA blot analyses showed that many of these miRNAs differentially accumulated during ovule and fiber development. The cotton miRNAs examined triggered target cleavage in the same predicted sites of the cotton targets in ovules and fibers as that of the orthologous target genes in Arabidopsis. Targets of the potential new cotton miRNAs matched the previously characterized ESTs derived from cotton ovules and fibers. The miRNA targets including those encoding auxin response factors were differentially expressed during fiber development. We suggest that both conserved and new miRNAs play an important role in the rapid and dynamic process of fiber and ovule development in cotton.
Project description:This experiment was designed to investigate the molecular basis of cotton fiber cell initiation. 32,000 ESTs were sequenced from Gossypium hirsutum L. TM-1 immature ovules (GH_TMO) and developed cotton oligonucleotide microarrays containing ~23,000 unigenes. Transcriptome analyses were performed to compare gene expression changes in laser capture microdissected fiber cell initials (or epidermis) and inner ovules. The gene expression profiles of the fiber cell initials were compared with those of the inner ovules in each developmental stage prior to, right at, and shortly after the initiation of fiber cells. Many genes in various molecular function or biological processes were over- or under-represented between fibers and non-fiber tissues in each developmental stage, suggesting temporal regulation of gene expression during early stages of fiber development.
Project description:This experiment describes gene expression after the activation of APETALA1-GR, to study and identify AP1 target genes. We used a 35S:AP1-GR ap1 cal line to induce a synchronized response activating the AP1-GR fusion protein in ap1 cal inflorescence-like meristems through dexamethasone or dexamethasone+cycloheximide treatment. Tissue samples were collected at 3hrs after the treatment. The expression profiles of the individual samples were then analyzed by gene expression profiling using whole-genome oligonucleotide arrays (Agilent, custom-commercial). We treated inflorescences of 35S:AP1-GR ap1-1 cal-1 plants with a dexamethasone-containing or a mock solution, or with identical solutions that contained in addition 10 M-NM-<M cycloheximide. Tissue was collected 3 hours after the treatment. Samples from each of the four biological replicates resulted in a set of four hybridization pairs: Mock vs. Dex, Mock vs. Chx, Mock vs. Dex+Chx, and Chx vs. Dex+Chx. Dye polarities were switched between biological replicates.
Project description:This experiment was designed to investigate the molecular basis of cotton fiber cell initiation. 32,000 ESTs were sequenced from Gossypium hirsutum L. TM-1 immature ovules (GH_TMO) and developed cotton oligonucleotide microarrays containing ~23,000 unigenes. Transcriptome analyses were performed to compare gene expression changes in laser capture microdissected fiber cell initials (or epidermis) and inner ovules. The gene expression profiles of the fiber cell initials were compared with those of the inner ovules in each developmental stage prior to, right at, and shortly after the initiation of fiber cells. Many genes in various molecular function or biological processes were over- or under-represented between fibers and non-fiber tissues in each developmental stage, suggesting temporal regulation of gene expression during early stages of fiber development. For gene expression studies using a large set cotton oligo-microarray, 4 developmental stages were chosen. To study differential expression during fiber initiation, ovules at -2 DPA, 0 DPA, and 2 DPA were used. One of the fiber elongation stage tissues (7 DPA) was included. In each developmental stage, epidermis was separated from inner ovules and subjected to the hybridization. In addition, epidermis and ovule comparisons were performed individually with 0 DPA as a control point for comparison.