Genomics

Dataset Information

0

Transcription Factor Binding Sites by ChIP-seq from ENCODE/PSU


ABSTRACT: This data was generated by ENCODE. If you have questions about the data, contact the submitting laboratory directly (Ross Hardison mailto:rch8@psu.edu). If you have questions about the Genome Browser track associated with this data, contact ENCODE (mailto:genome@soe.ucsc.edu). Rationale for the Mouse ENCODE project Our knowledge of the function of genomic DNA sequences comes from three basic approaches. Genetics uses changes in behavior or structure of a cell or organism in response to changes in DNA sequence to infer function of the altered sequence. Biochemical approaches monitor states of histone modification, binding of specific transcription factors, accessibility to DNases and other epigenetic features along genomic DNA. In general, these are associated with gene activity, but the precise relationships remain to be established. The third approach is evolutionary, using comparisons among homologous DNA sequences to find segments that are evolving more slowly or more rapidly than expected given the local rate of neutral change. These are inferred to be under negative or positive selection, respectively, and we interpret these as DNA sequences needed for a preserved (negative selection) or adaptive (positive selection) function. The ENCODE project aims to discover all the DNA sequences associated with various epigenetic features, with the reasonable expectation that these will also be functional (best tested by genetic methods). However, it is not clear how to relate these results with those from evolutionary analyses. The mouse ENCODE project aims to make this connection explicitly and with a moderate breadth. Assays identical to those being used in the ENCODE project are performed in cell types in mouse that are similar or homologous to those studied in the human project. Thus we will be able to discover which epigenetic features are conserved between mouse and human, and we can examine the extent to which these overlap with the DNA sequences under negative selection. The contribution of DNA that with a function preserved in mammals versus that with a function in only one species will be discovered. The results will have a significant impact on our understanding of the evolution of gene regulation. Maps of Occupancy by Transcription Factors Maps of occupancy of genomic DNA by transcription factors (TFs) are determined by ChIP-seq. This consists of two basic steps: chromatin immunoprecipitation (ChIP) is used to highly enrich genomic DNA for the segments bound by specific proteins (the antigens recognized by the antibodies) followed by massively parallel short read sequencing to tag the enriched DNA segments. Sequencing is done on the Illumina GAIIx and HiSeq. The sequence tags are mapped back to the mouse genome (Langmead et al. 2009), and a graph of the enrichment for TF binding are displayed as the "Signal" track (essentially the counts of mapped reads per interval) and the deduced probable binding sites from the MACS program (Zhang et al. 2008) are shown in the "Peaks" track. Each experiment is associated with an input signal, which represents the control condition where immunoprecipitation with non-specific immunoglobulin was performed in the same cell type. The sequence reads, quality scores, and alignment coordinates from these experiments are available for download. For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf

ORGANISM(S): Mus musculus

PROVIDER: GSE36029 | GEO | 2012/04/30

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2012-06-11 | GSE36028 | GEO
2012-04-13 | GSE36024 | GEO
2012-09-13 | GSE40848 | GEO
2012-09-13 | E-GEOD-40848 | biostudies-arrayexpress
2012-04-19 | GSE36023 | GEO
2012-08-31 | GSE40522 | GEO
2012-06-11 | E-GEOD-36028 | biostudies-arrayexpress
2012-08-31 | E-GEOD-40522 | biostudies-arrayexpress
2012-04-13 | E-GEOD-36024 | biostudies-arrayexpress
2012-04-29 | E-GEOD-36029 | biostudies-arrayexpress