Recurrent amplifications of the histone methyltransferase SETDB1 in melanoma
Ontology highlight
ABSTRACT: The most common mutation in human melanoma, BRAF(V600E), activates the serine/threonine kinase BRAF and causes excessive activity in the mitogen-activated protein kinase pathway. BRAF(V600E) mutations are also present in benign melanocytic naevi, highlighting the importance of additional genetic alterations in the genesis of malignant tumours. Such changes include recurrent copy number variations that result in the amplification of oncogenes. For certain amplifications, the large number of genes in the interval has precluded an understanding of the cooperating oncogenic events. Here we have used a zebrafish melanoma model to test genes in a recurrently amplified region of chromosome 1 for the ability to cooperate with BRAF(V600E) and accelerate melanoma. SETDB1, an enzyme that methylates histone H3 on lysine 9 (H3K9), was found to accelerate melanoma formation significantly in zebrafish. Chromatin immunoprecipitation coupled with massively parallel DNA sequencing and gene expression analyses uncovered genes, including HOX genes, that are transcriptionally dysregulated in response to increased levels of SETDB1. Our studies establish SETDB1 as an oncogene in melanoma and underscore the role of chromatin factors in regulating tumorigenesis.
Project description:The most common mutation in human melanoma, BRAF(V600E), activates the serine/threonine kinase BRAF and causes excessive activity in the mitogen-activated protein kinase pathway. BRAF(V600E) mutations are also present in benign melanocytic naevi, highlighting the importance of additional genetic alterations in the genesis of malignant tumours. Such changes include recurrent copy number variations that result in the amplification of oncogenes. For certain amplifications, the large number of genes in the interval has precluded an understanding of the cooperating oncogenic events. Here we have used a zebrafish melanoma model to test genes in a recurrently amplified region of chromosome 1 for the ability to cooperate with BRAF(V600E) and accelerate melanoma. SETDB1, an enzyme that methylates histone H3 on lysine 9 (H3K9), was found to accelerate melanoma formation significantly in zebrafish. Chromatin immunoprecipitation coupled with massively parallel DNA sequencing and gene expression analyses uncovered genes, including HOX genes, that are transcriptionally dysregulated in response to increased levels of SETDB1. Our studies establish SETDB1 as an oncogene in melanoma and underscore the role of chromatin factors in regulating tumorigenesis. DNA was enriched from short-term cultures of cells and chromatin immunoprecipitations (ChIPs) were analyzed by Solexa sequencing. ChIPs were performed using an antibody against SetDB1 in WM853.2. Whole cell extracts are provided for WM262, WM451Lu and WM853.2 cells.
Project description:The most common mutation in human melanoma, BRAF(V600E), activates the serine/threonine kinase BRAF and causes excessive activity in the mitogen-activated protein kinase pathway. BRAF(V600E) mutations are also present in benign melanocytic naevi, highlighting the importance of additional genetic alterations in the genesis of malignant tumours. Such changes include recurrent copy number variations that result in the amplification of oncogenes. For certain amplifications, the large number of genes in the interval has precluded an understanding of the cooperating oncogenic events. Here we have used a zebrafish melanoma model to test genes in a recurrently amplified region of chromosome 1 for the ability to cooperate with BRAF(V600E) and accelerate melanoma. SETDB1, an enzyme that methylates histone H3 on lysine 9 (H3K9), was found to accelerate melanoma formation significantly in zebrafish. Chromatin immunoprecipitation coupled with massively parallel DNA sequencing and gene expression analyses uncovered genes, including HOX genes, that are transcriptionally dysregulated in response to increased levels of SETDB1. Our studies establish SETDB1 as an oncogene in melanoma and underscore the role of chromatin factors in regulating tumorigenesis. ChIP was performed from short-term cultures of WM262 and WM451Lu cells.
Project description:The most common mutation in human melanoma, BRAF(V600E), activates the serine/threonine kinase BRAF and causes excessive activity in the mitogen-activated protein kinase pathway. BRAF(V600E) mutations are also present in benign melanocytic naevi, highlighting the importance of additional genetic alterations in the genesis of malignant tumours. Such changes include recurrent copy number variations that result in the amplification of oncogenes. For certain amplifications, the large number of genes in the interval has precluded an understanding of the cooperating oncogenic events. Here we have used a zebrafish melanoma model to test genes in a recurrently amplified region of chromosome 1 for the ability to cooperate with BRAF(V600E) and accelerate melanoma. SETDB1, an enzyme that methylates histone H3 on lysine 9 (H3K9), was found to accelerate melanoma formation significantly in zebrafish. Chromatin immunoprecipitation coupled with massively parallel DNA sequencing and gene expression analyses uncovered genes, including HOX genes, that are transcriptionally dysregulated in response to increased levels of SETDB1. Our studies establish SETDB1 as an oncogene in melanoma and underscore the role of chromatin factors in regulating tumorigenesis.
Project description:Investigation of expression differences between melanomas harvested from MiniCoopR-GFP versus MiniCoopR-SETDB1 transgenic zebrafish. An eight-chip study using total RNA prepared from four distinct melanomas from zebrafish injected with MiniCoopR-GFP (control) transposon and four distinct melanomas from zebrafish injected with MiniCoopR-SETDB1 transposon. Injected animals carried a p53 loss-of-function mutation, a mutation in nacre, and an mitf:BRAF-V600E transgene. Each chip measures the expression level of 32,292 genes.
Project description:BRAF, one of three RAF serine/threonine kinases (ARAF, BRAF and CRAF), plays a major role in the RAS-RAF-MEK-ERK mitogen-activated protein kinase (MAPK) signaling pathway, which mediates cellular responses to growth signals. Recently a high frequency (~60%-70%) of activating BRAF mutations (predominantly V600E) has been reported in malignant melanoma. In order to identify the downstream effects of BRAF signaling on melanoma cell growth and gene expression, cDNA microarray analysis was carried out following BRAF siRNA or MEK1/2 inhibitor (U0126) treatment. Keywords: time series, siRNA time series, siRNA, drug treatment
Project description:BRAF, one of three RAF serine/threonine kinases (ARAF, BRAF and CRAF), plays a major role in the RAS-RAF-MEK-ERK mitogen-activated protein kinase (MAPK) signaling pathway, which mediates cellular responses to growth signals. Recently a high frequency (~60%-70%) of activating BRAF mutations (predominantly V600E) has been reported in malignant melanoma. In order to identify the downstream effects of BRAF signaling on melanoma cell growth and gene expression, cDNA microarray analysis was carried out following BRAF siRNA or MEK1/2 inhibitor (U0126) treatment. Keywords: time series, siRNA
Project description:We treated for 24 hours the BRAF-V600E melanoma cell line A375 with 7 doses of the RAF inhibitor Vemurafenib and, in a second experimental desing, we treated for 24 hours the BRAF-V600E melanoma cell line A375 with Vemurafenib (1 uM) alone or in combination with the MEK inhibitor Cobimetinib (1 uM) and subsequently stimulated with EGF in a time-course of 7 time points for up to 8 hours (0, 0.5, 1, 2, 3, 4, 8 hours).
Project description:We found that pigmented and amelanotic (MPNST-like) melanomas arise in the genetically engineered BRAF(V600E)-Cdk4(R24C) mouse melanoma model and even in the same animal. To explore the molecular differences between the two type of melanomas in this model we performed global gene expression profiling and pathway analysis to compare the underlying mechanisms. This information was used to identify human melanomas that resemble each type of the mouse melanomas found in the in the genetically engineered BRAF(V600E)-Cdk4(R24C) mouse melanoma model.
Project description:We used RNAseq to examine gene expression changes in thyroid tumors arising in transgenic zebrafish engineered to expression human CCDC6-RET or BRAF(V600E) oncogenes