Interplay between AP-1 and ERalpha in regulating gene expression and proliferation networks in breast cancer cells
Ontology highlight
ABSTRACT: Estrogen receptor alpha (ERalpha) is a ligand-dependent transcription factor that plays an important role in breast cancer. Estrogen-dependent gene regulation by ERalpha can be mediated by interaction with other DNA-binding proteins, such as activator protein-1 (AP-1). The nature of such interactions in mediating the estrogen response in breast cancer cells remains unclear. Here we show that knockdown of c-Fos, a component of the transcription factor AP-1, attenuates the expression of 37% of all estrogen-regulated genes, suggesting that AP-1 is a fundamental factor for ERalpha-mediated transcription. Additionally, knockdown of c-Fos affected the expression of a number of genes that were not regulated by estrogen. Pathway analysis reveals that silencing of c-Fos downregulates an E2F1-dependent pro-proliferative gene network. Thus, modulation of the E2F1 pathway by c-Fos represents a novel mechanism by which c-Fos enhances breast cancer cell proliferation. Furthermore, we show that c-Fos and ERalpha can cooperate in regulating E2F1 gene expression by binding to regulatory elements in the E2F1 promoter. To start to dissect the molecular details of the cross-talk between AP-1 and estrogen signaling, we identify a novel ERalpha/AP-1 target, PKIB (cAMP-dependent protein kinase inhibitor-beta), which is overexpressed in ERalpha-positive breast cancer tissues. Knockdown of PKIB by siRNA results in drastic growth suppression of breast cancer cells. Collectively, our findings support AP-1 as a critical factor that governs estrogen-dependent gene expression and breast cancer proliferation programs.
ORGANISM(S): Homo sapiens
PROVIDER: GSE36586 | GEO | 2012/08/06
SECONDARY ACCESSION(S): PRJNA153755
REPOSITORIES: GEO
ACCESS DATA