Project description:Pluripotent stem cells evade replicative senescence, whereas other primary cells lose their proliferation and differentiation potential after a limited number of cell divisions, and this is accompanied by specific senescence-associated DNA methylation (SA-DNAm) changes. Here, we investigate SA-DNAm changes in mesenchymal stromal cells (MSC) upon long-term culture, irradiation-induced senescence, immortalization, and reprogramming into induced pluripotent stem cells (iPSC) using high-density HumanMethylation450 BeadChips. SA-DNAm changes are highly reproducible and they are enriched in intergenic and nonpromoter regions of developmental genes. Furthermore, SA-hypomethylation in particular appears to be associated with H3K9me3, H3K27me3, and Polycomb-group 2 target genes. We demonstrate that ionizing irradiation, although associated with a senescence phenotype, does not affect SA-DNAm. Furthermore, overexpression of the catalytic subunit of the human telomerase (TERT) or conditional immortalization with a doxycycline-inducible system (TERT and SV40-TAg) result in telomere extension, but do not prevent SA-DNAm. In contrast, we demonstrate that reprogramming into iPSC prevents almost the entire set of SA-DNAm changes. Our results indicate that long-term culture is associated with an epigenetically controlled process that stalls cells in a particular functional state, whereas irradiation-induced senescence and immortalization are not causally related to this process. Absence of SA-DNAm in pluripotent cells may play a central role for their escape from cellular senescence.
Project description:This SuperSeries is composed of the following subset Series: GSE37065: Long-term culture associated gene expression changes in MSC [Affymetrix] GSE37066: Pluripotent Stem Cells Escape From Senescence-Associated DNA Methylation Changes [Illumina] GSE38806: Gene expression profiles of induced pluripotent mesenchymal stromal cells [Affymetrix] Refer to individual Series
Project description:Pluripotent stem cells evade replicative senescence, whereas other primary cells lose their proliferation and differentiation potential after a limited number of cell divisions M-bM-^@M-^S and this is accompanied by specific senescence-associated DNA methylation (SA-DNAm) changes. Here, we investigate SA-DNAm changes in mesenchymal stromal cells (MSC) upon long-term culture, irradiation-induced senescence, immortalization and reprogramming into induced pluripotent stem cells (iPSC) using high density HumanMethylation450 BeadChips. SA-DNAm changes are highly reproducible and occur particularly in intergenic and non-promoter regions of developmental genes. We demonstrate that ionizing irradiation, although associated with a very similar senescence phenotype, does not affect SA-DNAm. Furthermore, overexpression of the catalytic subunit of the human telomerase (TERT) or conditional immortalization with a doxycycline-inducible system (TERT and SV40 TAg) result in telomere extension but do not influence SA-DNAm. In contrast, we demonstrate that reprogramming into iPSC prevented SA-DNAm changes. Our results indicate that replicative senescence is associated with an epigenetically controlled process which stalls cells in a particular differentiated state, whereas irradiation-induced senescence and immortalization are not causally related to this process. Absence of SA-DNAm in pluripotent cells may play a central role for their escape from cellular senescence. Samples were hybridised to the Illumina Infinium 450k Human Methylation Beadchip
Project description:Pluripotent stem cells evade replicative senescence, whereas other primary cells lose their proliferation and differentiation potential after a limited number of cell divisions – and this is accompanied by specific senescence-associated DNA methylation (SA-DNAm) changes. Here, we investigate SA-DNAm changes in mesenchymal stromal cells (MSC) upon long-term culture, irradiation-induced senescence, immortalization and reprogramming into induced pluripotent stem cells (iPSC) using high density HumanMethylation450 BeadChips. SA-DNAm changes are highly reproducible and occur particularly in intergenic and non-promoter regions of developmental genes. We demonstrate that ionizing irradiation, although associated with a very similar senescence phenotype, does not affect SA-DNAm. Furthermore, overexpression of the catalytic subunit of the human telomerase (TERT) or conditional immortalization with a doxycycline-inducible system (TERT and SV40 TAg) result in telomere extension but do not influence SA-DNAm. In contrast, we demonstrate that reprogramming into iPSC prevented SA-DNAm changes. Our results indicate that replicative senescence is associated with an epigenetically controlled process which stalls cells in a particular differentiated state, whereas irradiation-induced senescence and immortalization are not causally related to this process. Absence of SA-DNAm in pluripotent cells may play a central role for their escape from cellular senescence.
Project description:Replicative senescence has a major impact on function and integrity of cell preparations. This process is reflected by continuous DNA methylation (DNAm) changes at specific CpG dinucleotides in the course of in vitro culture, and such modifications can be used to estimate the state of cellular senescence for quality control of cell preparations. Still, it is unclear how senescence-associated DNAm changes are regulated and whether they occur simultaneously across a cell population. In this study, we analyzed global DNAm profiles of human mesenchymal stem cells (MSCs) and human umbilical vein endothelial cells (HUVECs) to demonstrate that senescence-associated DNAm changes are overall similar in these different cell types. Subsequently, an Epigenetic-Senescence-Signature, based on six CpGs, was either analyzed by pyrosequencing or by bar-coded bisulfite amplicon sequencing. There was a good correlation between predicted and real passage numbers in bulk populations of MSCs (R2 = 0.67) and HUVECs (R2 = 0.97). However, when we analyzed the Epigenetic-Senescence-Signature in subclones of MSCs, the predictions revealed high variation and they were not related to the adipogenic or osteogenic differentiation potential of the subclones. Notably, in clonally derived subpopulations, the DNAm levels of neighboring CpGs differed extensively, indicating that these genomic regions are not synchronously modified during senescence. Taken together, senescence-associated DNAm changes occur in a highly reproducible manner, but they are not synchronously co-regulated. They rather appear to be acquired stochastically-potentially evoked by other epigenetic modifications.