Natalizumab exerts direct signaling capacity and supports a pro-inflammatory phenotype in some patients with multiple sclerosis
Ontology highlight
ABSTRACT: Natalizumab is a recombinant monoclonal antibody raised against integrin alpha-4 (CD49d). It is approved for the treatment of patients with multiple sclerosis (MS), a chronic inflammatory autoimmune disease of the CNS. Natalizumab blocks leukocyte extravasation across the blood-brain barrier by inhibiting the molecular interaction between integrin alpha-4/beta-1 heterodimers expressed on leukocytes and VCAM-1 on inflammatory-activated CNS endothelium. Here we investigated whether binding of this adhesion-blocking antibody to T lymphocytes modulated their phenotype by direct induction of intracellular signaling events. Natalizumab induced a mild upregulation of IL-2, IFN-gamma and IL-17 expression in activated primary human CD4+ T cells propagated ex vivo from healthy donors, consistent with a pro-inflammatory costimulatory effect on lymphokine expression. Overall, the relative effect of natalizumab was more pronounced in less than in fully activated T cells. Along with this, natalizumab binding triggered rapid MAPK/ERK phosphorylation. Furthermore, it decreased CD49d surface expression on effector cells within a few hours. Sustained CD49d downregulation could be attributed to integrin internalization and degradation. Importantly, also CD4+ T cells from some MS patients receiving their very first dose of natalizumab produced more IL-2, IFN-gamma and IL-17 already 24 h after infusion. Together these data indicate that in addition to its adhesion-blocking mode of action, natalizumab possesses mild direct signaling capacities, which may support a pro-inflammatory phenotype of peripheral blood T lymphocytes. This might explain why a rebound of disease activity is observed in some MS patients after natalizumab cessation.
ORGANISM(S): Homo sapiens
PROVIDER: GSE37783 | GEO | 2015/05/02
SECONDARY ACCESSION(S): PRJNA163655
REPOSITORIES: GEO
ACCESS DATA