ABSTRACT: Psychological stress reactions can stimulate mammalian immune functions due to yet unknown mechanisms. We hypothesized that these involve massive post-stress alternative splicing modulations in peripheral blood mononuclear cells (PBMCs). RNA was extracted from PBMCs of BALB/C mice following unpredictable repeated foot shocks. Among the tested group, five mice exhibiting the maximal circulation glucocorticoids were selected for the stress group. PBMC RNA of 5 BALB/C mice served as the control group. Through linear regression analysis of all the reciprocal junction pairs represented on the microarrays and the Ensembl database, 496 alternative splicing events were detected. The stressed mice showed 65% exon skipping out of total splicing event changes compared to controls. The detected genes exhibited functional enrichment (through DAVID EASE analysis) in alternative splicing (47%), cellular response to stress (12%), lymphocyte activation (8%), stress-induced proteins (2%) and heat-shock-induced proteins (2%). Specifically, exon skipping modifications in the Hnrnph1 and CLK1 splicing-related transcripts were accompanied by stress-inducible inclusions in the immune response-related IRF-1 gene. Our findings demonstrate dependence on exon skipping and independence from glucocorticoid and innate immunity for the stress-inducible exacerbation of immunity and open new venues for preventing post-trauma inflammatory crisis.
Project description:Pre-mRNA splicing is functionally coupled to transcription, and genotoxic stresses can enhance alternative exon inclusion by affecting elongating RNA polymerase II. We report here that various genotoxic stress inducers, including camptothecin, inhibit the interaction between EWS, an RNA polymerase II-associated factor, and YB-1, a spliceosome-associated factor. This results in the cotranscriptional skipping of several exons of the MDM2 gene encoding the main p53 ubiquitin-ligase. This reversible exon skipping participates in the timely regulation of MDM2 expression, and may contribute to the accumulation of p53 during stress exposure and its rapid shut off when stress is removed. Finally, a splicing-sensitive microarray identified numerous exons that are skipped in response to camptothecin and EWS/YB-1 depletion. These data demonstrate genotoxic stress-induced alteration of the communication between the transcriptional and splicing machineries, resulting in widespread exon skipping and playing a central role in the genotoxic stress response. 6 samples of MCF7 cells exposed to different treatments were analyzed: 3 x control_6 hours; 3 x camptothecin_6 hours.
Project description:Pediatric brain cancer is the leading cause of disease-related mortality in children, and many aggressive tumors still lack effective treatment strategies. Despite extensive studies characterizing these tumor genomes, alternative transcriptional splicing patterns remain underexplored. Here, we systematically characterized aberrant alternative splicing across pediatric brain tumors, identifying pediatric high-grade gliomas (HGGs) among the most heterogeneous. Through integration with UniProt Knowledgebase annotations, we identified 12,145 splice events in 5,424 genes, leading to functional changes in protein activation, folding, and localization. We discovered that the master splicing factor and cell-cycle modulator, CDC-like kinase 1 (CLK1), is aberrantly spliced in HGGs to include exon 4, resulting in a gain of two phosphorylation sites and subsequent activation of CLK1. Inhibition of CLK1 with Cirtuvivint in the pediatric HGG KNS-42 cell line significantly decreased both cell viability and proliferation in a dose-dependent manner. Morpholino-mediated depletion of CLK1 exon 4 splicing reduced RNA expression, protein abundance, and cell viability. Notably, KNS-42 cells treated with the CLK1 exon 4 morpholino demonstrated differential expression impacting 173 cancer genes and differential splicing with loss or gain of a functional site in 529 cancer genes. These genes were enriched for cancer-associated pathways, with 20 identified as significant gene dependencies in pediatric HGGs. Our findings highlight a dependency of pediatric HGGs on CLK1 and its roles contributing to tumor splicing heterogeneity through transcriptional dysregulation of splicing factors and direct transcriptional modulation of oncogenes. Overall, aberrant splicing in HGGs and other pediatric brain tumors represents a potentially targetable oncogenic pathway contributing to tumor growth and maintenance. Continued investigation of these mechanisms is essential for developing new effective treatment strategies for these patients.
Project description:Pre-mRNA splicing is functionally coupled to transcription, and genotoxic stresses can enhance alternative exon inclusion by affecting elongating RNA polymerase II. We report here that various genotoxic stress inducers, including camptothecin, inhibit the interaction between EWS, an RNA polymerase II-associated factor, and YB-1, a spliceosome-associated factor. This results in the cotranscriptional skipping of several exons of the MDM2 gene encoding the main p53 ubiquitin-ligase. This reversible exon skipping participates in the timely regulation of MDM2 expression, and may contribute to the accumulation of p53 during stress exposure and its rapid shut off when stress is removed. Finally, a splicing-sensitive microarray identified numerous exons that are skipped in response to camptothecin and EWS/YB-1 depletion. These data demonstrate genotoxic stress-induced alteration of the communication between the transcriptional and splicing machineries, resulting in widespread exon skipping and playing a central role in the genotoxic stress response.
Project description:Alternative splicing (AS) generates extensive transcriptomic and proteomic complexity. However, the functions of species- and lineage-specific splice variants are largely unknown. Here, we show that mammalian-specific skipping of exon 9 of PTBP1 alters its splicing regulatory activities and affects the inclusion levels of numerous exons. During neurogenesis, skipping of exon 9 reduces PTBP1 repressive activity so as to facilitate activation of a brain-specific AS program. Engineered skipping of the orthologous exon in chicken cells induces a large number of mammalian-like AS changes in PTBP1 target exons. These results thus reveal that a single exon skipping event in an RNA binding regulator directs numerous AS changes between species. The results further suggest that these changes contributed to evolutionary differences in the formation of vertebrate nervous systems.
Project description:As the most prevalent type of alternative splicing in animal cells, exon skipping plays an important role in expanding the diversity of transcriptome and proteome, thereby participating the regulation of diverse physiological and pathological processes such as development, aging and cancer. Cellular senescence serves as an anti-cancer mechanism could also contribute to individual aging. Although the dynamic changes of exon skipping during cellular senescence were revealed, its biological consequence and upstream regulator remain poorly understood. Here, by using human foreskin fibroblasts (HFF) replicative senescence as a model, we discovered that splicing factor PTBP1 was an important contributor for global exon skipping events during senescence. Down-regulated expression of PTBP1 induced senescence-associated phenotypes and related mitochondrial functional changes. Mechanistically, PTBP1 binds to the third exon of mitochondrial complex I subunit coding gene NDUFV3 and protects the exon from skipping. We further confirmed that exon skipping of NDUFV3 correlates with and partially contributes to cellular senescence and related mitochondrial functional changes upon PTBP1 knockdown. Together, we revealed for the first time that mitochondrial related gene NDUFV3 is a new downstream target for PTBP1-regulated exon skipping to mediate cellular senescence and mitochondrial functional changes.
Project description:Alternative splicing (AS) generates extensive transcriptomic and proteomic complexity. However, the functions of species- and lineage-specific splice variants are largely unknown. Here, we show that mammalian-specific skipping of exon 9 of PTBP1 alters its splicing regulatory activities and affects the inclusion levels of numerous exons. During neurogenesis, skipping of exon 9 reduces PTBP1 repressive activity so as to facilitate activation of a brain-specific AS program. Engineered skipping of the orthologous exon in chicken cells induces a large number of mammalian-like AS changes in PTBP1 target exons. These results thus reveal that a single exon skipping event in an RNA binding regulator directs numerous AS changes between species. The results further suggest that these changes contributed to evolutionary differences in the formation of vertebrate nervous systems. This study contains two sets of samples: (Set 1) mRNA profiling of human 293 cells subjected to four different conditions in two biological replicates: non-targetting control siRNA, PTBP1 and PTBP2 siRNA, PTBP1 and PTBP2 siRNA with overexpression of full-length human PTBP1, PTBP1 and PTBP2 siRNA with overexpression of exon-excluded human PTBP1. (Set 2) mRNA profiling of chicken DT40 cells with 3 genotypes in two bioligcal replicates: wildtype cells, cells with PTBP1 exon 8 (orthologous to human PTBP1 exon 9) deleted in one allele, and cells with PTBP1 exon 8 deleted in both alleles.
Project description:Recent transcriptome analysis indicates that >90% of human genes undergoes alternative splicing, underscoring the contribution of differential RNA processing to diverse proteomes in higher eukaryotic cells. The polypyrimidine tract binding protein PTB is a well-characterized splicing repressor, but PTB knockdown causes both exon inclusion and skipping. Genome-wide mapping of PTB-RNA interactions and construction of a functional RNA map now revealed that dominant PTB binding near a competing constitutive splice site generally induces exon inclusion whereas prevalent binding close to an alternative site often causes exon skipping. This positional effect was further demonstrated by disrupting or creating a PTB binding site on minigene constructs and testing their responses to PTB knockdown or overexpression. These findings suggest a mechanism for PTB to modulate splice site competition to produce opposite functional consequences, which may be generally applicable to RNA binding splicing factors to positively or negatively regulate alternative splicing in mammalian cells.
Project description:Here we describe a lariat-sequencing approach, which offers high sensitivity for detecting splicing events, and its application to the unicellular fungus, Schizosaccharomyces pombe, an organism that shares many of the hallmarks of alternative splicing in mammalian systems but for which no previous examples of exon-skipping had been demonstrated. Over 200 previously unannotated splicing events were identified, including examples of regulated alternative splicing.
Project description:Alternative splicing of RNA transcripts can result in a multitude of variations from the genome. Since splicing can occur co-transcriptionally, chromatin structure has been reported to affect the choice of a splice site. TIP60 is a haploinsufficient tumor suppressor gene that is frequently downregulated in cancers. Since TIP60 is a writer of histone and non-histone modifications, we investigated TIP60’s role in modulating alternative splicing. RNA sequencing was performed in TIP60-depleted MCF10A cells and with cells rescued with wild-type or catalytically inactive TIP60. The majority of the differential splicing events were skipped exon events, including exon 25 skipping event of ITGA6. To identify the splicing factor that regulates this event, a siRNA screen of 77 splicing factors was employed. TIP60 depletion results in an increase in the ITGA6 isoform that lacks exon 25 and the siRNA screen identified ESRP2 to regulate splicing of ITGA6 exon 25. This study suggests that alternative splicing of ITGA6 exon 25 is regulated by the TIP60-ESRP2 axis.