Project description:Mechanisms composing Drosophila's clock are conserved within the animal kingdom. To learn how such clocks influence behavioral and physiological rhythms, we determined the complement of circadian transcripts in adult Drosophila heads. High-density oligonucleotide arrays were used to collect data in the form of three 12-point time course experiments spanning a total of 6 days. Analyses of 24 hr Fourier components of the expression patterns revealed significant oscillations for 400 transcripts. Based on secondary filters and experimental verifications, a subset of 158 genes showed particularly robust cycling and many oscillatory phases. Circadian expression was associated with genes involved in diverse biological processes, including learning and memory/synapse function, vision, olfaction, locomotion, detoxification, and areas of metabolism. Data collected from three different clock mutants (per0, tim01, and ClkJrk), are consistent with both known and novel regulatory mechanisms controlling circadian transcription (Claridge-Chang et al., Neuron. 2001 Nov 20;32(4):657-71). For more information see also http://biorhythm.rockefeller.edu Keywords: Time course
Project description:This SuperSeries is composed of the following subset Series:; GSE3826: LD/DD time course of y w Drosophila #1; GSE3828: LD/DD time course of y w Drosophila #2; GSE3829: LD/DD time course of cn bw Drosophila; GSE3830: LD/DD time course of y w Drosophila #3; GSE3831: LD/DD time course of y w; tim01 Drosophila #1; GSE3832: LD/DD time course of y w; tim01 Drosophila #2 Experiment Overall Design: Refer to individual Series
Project description:Background. The transcriptional circuits of circadian clocks control physiological and behavioral rhythms. Light may affect such overt rhythms in two ways: (1) by entraining the clock circuits and (2) via clock-independent molecular pathways. In this study we examine the relationship between autonomous transcript oscillations and light-driven transcript responses Methodology/Principal Findings. Transcript profiles of wild-type and arrhythmic mutant Drosophila were recorded both in the presence of an environmental photocycle and in constant darkness. Systematic autonomous oscillations in the 12-48 hr period range were detectable only in wild-type flies and occurred preferentially at the circadian period length. However, an extensive program of light-driven expression was confirmed in arrhythmic mutant flies. Many lightresponsive transcripts are preferentially expressed in the adult compound eye and the phospholipase C component of phototransduction, NO RECEPTOR POTENTIAL (NORPA), is required for their light-dependent regulation. Conclusions/Significance. Although there is growing evidence for the existence of multiple molecular clock circuits in plants and fungi, Drosophila appears to possess only one such system. The sustained photic expression responses identified here are partially coupled to the circadian clock and may reflect a mechanism for flies to modulate functions such as visual sensitivity and synaptic transmission in response to seasonal changes in photoperiod. Keywords: Time course
Project description:Background. The transcriptional circuits of circadian clocks control physiological and behavioral rhythms. Light may affect such overt rhythms in two ways: (1) by entraining the clock circuits and (2) via clock-independent molecular pathways. In this study we examine the relationship between autonomous transcript oscillations and light-driven transcript responses Methodology/Principal Findings. Transcript profiles of wild-type and arrhythmic mutant Drosophila were recorded both in the presence of an environmental photocycle and in constant darkness. Systematic autonomous oscillations in the 12-48 hr period range were detectable only in wild-type flies and occurred preferentially at the circadian period length. However, an extensive program of light-driven expression was confirmed in arrhythmic mutant flies. Many lightresponsive transcripts are preferentially expressed in the adult compound eye and the phospholipase C component of phototransduction, NO RECEPTOR POTENTIAL (NORPA), is required for their light-dependent regulation. Conclusions/Significance. Although there is growing evidence for the existence of multiple molecular clock circuits in plants and fungi, Drosophila appears to possess only one such system. The sustained photic expression responses identified here are partially coupled to the circadian clock and may reflect a mechanism for flies to modulate functions such as visual sensitivity and synaptic transmission in response to seasonal changes in photoperiod. Keywords: Time course
Project description:Mechanisms composing Drosophila's clock are conserved within the animal kingdom. To learn how such clocks influence behavioral and physiological rhythms, we determined the complement of circadian transcripts in adult Drosophila heads. High-density oligonucleotide arrays were used to collect data in the form of three 12-point time course experiments spanning a total of 6 days. Analyses of 24 hr Fourier components of the expression patterns revealed significant oscillations for 400 transcripts. Based on secondary filters and experimental verifications, a subset of 158 genes showed particularly robust cycling and many oscillatory phases. Circadian expression was associated with genes involved in diverse biological processes, including learning and memory/synapse function, vision, olfaction, locomotion, detoxification, and areas of metabolism. Data collected from three different clock mutants (per0, tim01, and ClkJrk), are consistent with both known and novel regulatory mechanisms controlling circadian transcription (Claridge-Chang et al., Neuron. 2001 Nov 20;32(4):657-71). For more information see also http://biorhythm.rockefeller.edu Keywords: Time course
Project description:Mechanisms composing Drosophila's clock are conserved within the animal kingdom. To learn how such clocks influence behavioral and physiological rhythms, we determined the complement of circadian transcripts in adult Drosophila heads. High-density oligonucleotide arrays were used to collect data in the form of three 12-point time course experiments spanning a total of 6 days. Analyses of 24 hr Fourier components of the expression patterns revealed significant oscillations for 400 transcripts. Based on secondary filters and experimental verifications, a subset of 158 genes showed particularly robust cycling and many oscillatory phases. Circadian expression was associated with genes involved in diverse biological processes, including learning and memory/synapse function, vision, olfaction, locomotion, detoxification, and areas of metabolism. Data collected from three different clock mutants (per0, tim01, and ClkJrk), are consistent with both known and novel regulatory mechanisms controlling circadian transcription (Claridge-Chang et al., Neuron. 2001 Nov 20;32(4):657-71). For more information see also http://biorhythm.rockefeller.edu Keywords: Time course
Project description:Background. The transcriptional circuits of circadian clocks control physiological and behavioral rhythms. Light may affect such overt rhythms in two ways: (1) by entraining the clock circuits and (2) via clock-independent molecular pathways. In this study we examine the relationship between autonomous transcript oscillations and light-driven transcript responses Methodology/Principal Findings. Transcript profiles of wild-type and arrhythmic mutant Drosophila were recorded both in the presence of an environmental photocycle and in constant darkness. Systematic autonomous oscillations in the 12-48 hr period range were detectable only in wild-type flies and occurred preferentially at the circadian period length. However, an extensive program of light-driven expression was confirmed in arrhythmic mutant flies. Many lightresponsive transcripts are preferentially expressed in the adult compound eye and the phospholipase C component of phototransduction, NO RECEPTOR POTENTIAL (NORPA), is required for their light-dependent regulation. Conclusions/Significance. Although there is growing evidence for the existence of multiple molecular clock circuits in plants and fungi, Drosophila appears to possess only one such system. The sustained photic expression responses identified here are partially coupled to the circadian clock and may reflect a mechanism for flies to modulate functions such as visual sensitivity and synaptic transmission in response to seasonal changes in photoperiod. For more information see also http://biorhythm.rockefeller.edu. Keywords: Time course
Project description:Background. The transcriptional circuits of circadian clocks control physiological; and behavioral rhythms. Light may affect such overt rhythms in two ways: (1) by; entraining the clock circuits and (2) via clock-independent molecular pathways. In; this study we examine the relationship between autonomous transcript; oscillations and light-driven transcript responses; Methodology/Principal Findings. Transcript profiles of wild-type and arrhythmic; mutant Drosophila were recorded both in the presence of an environmental; photocycle and in constant darkness. Systematic autonomous oscillations in the; 12-48 hr period range were detectable only in wild-type flies and occurred; preferentially at the circadian period length. However, an extensive program of; light-driven expression was confirmed in arrhythmic mutant flies. Many lightresponsive; transcripts are preferentially expressed in the adult compound eye; and the phospholipase C component of phototransduction, NO RECEPTOR; POTENTIAL (NORPA), is required for their light-dependent regulation. Conclusions/Significance. Although there is growing evidence for the existence; of multiple molecular clock circuits in plants and fungi, Drosophila appears to; possess only one such system. The sustained photic expression responses; identified here are partially coupled to the circadian clock and may reflect a; mechanism for flies to modulate functions such as visual sensitivity and synaptic; transmission in response to seasonal changes in photoperiod. Experiment Overall Design: y w; tim01 flies that had been kept in a 12-hr light/ 12-hr dark cycle for three days were harvested every four hours during an additional light/dark day (ZT) and a subsequent day in constant darkness (CT). Relative to Zeitgeber time 0 (ZT0) as the time of lights on Experiment Overall Design: during the LD cycle and Circadian time 0 (CT0) as the time corresponding to Experiment Overall Design: subjective lights-on during freerun in DD, time courses were collected in a ZT2- Experiment Overall Design: ZT6-ZT10-ZT14-ZT18-ZT22-CT2-CT6-CT10-CT14-CT18-CT22 schedule. Heads Experiment Overall Design: were isolated by breaking up frozen flies and passing them through a set of Experiment Overall Design: sieves. RNA was prepared using guanidine-thiocyanate extraction followed by Experiment Overall Design: purification over a CsCl gradient. Additional purification of the RNA samples was Experiment Overall Design: achieved by applying them to Rneasy columns (Qiagen). Biotin-labeled cRNA Experiment Overall Design: probe was generated from 25 μg of purified RNA and hybridized as described Experiment Overall Design: previously (Wijnen H, Naef F, and Young MW, Methods Enzymol. 2005; 393: 341-365). Experiment Overall Design: For more information see also http://biorhythm.rockefeller.edu
Project description:Background. The transcriptional circuits of circadian clocks control physiological; and behavioral rhythms. Light may affect such overt rhythms in two ways: (1) by; entraining the clock circuits and (2) via clock-independent molecular pathways. In; this study we examine the relationship between autonomous transcript; oscillations and light-driven transcript responses; Methodology/Principal Findings. Transcript profiles of wild-type and arrhythmic; mutant Drosophila were recorded both in the presence of an environmental; photocycle and in constant darkness. Systematic autonomous oscillations in the; 12-48 hr period range were detectable only in wild-type flies and occurred; preferentially at the circadian period length. However, an extensive program of; light-driven expression was confirmed in arrhythmic mutant flies. Many lightresponsive; transcripts are preferentially expressed in the adult compound eye; and the phospholipase C component of phototransduction, NO RECEPTOR; POTENTIAL (NORPA), is required for their light-dependent regulation. Conclusions/Significance. Although there is growing evidence for the existence; of multiple molecular clock circuits in plants and fungi, Drosophila appears to; possess only one such system. The sustained photic expression responses; identified here are partially coupled to the circadian clock and may reflect a; mechanism for flies to modulate functions such as visual sensitivity and synaptic; transmission in response to seasonal changes in photoperiod. Experiment Overall Design: y w; tim01 flies that had been kept in a 12-hr light/ 12-hr dark cycle for three days were harvested every four hours during an additional light/dark day (ZT) and a subsequent day in constant darkness (CT). Relative to Zeitgeber time 0 (ZT0) as the time of lights on Experiment Overall Design: during the LD cycle and Circadian time 0 (CT0) as the time corresponding to Experiment Overall Design: subjective lights-on during freerun in DD, time courses were collected in a ZT2- Experiment Overall Design: ZT6-ZT10-ZT14-ZT18-ZT22-CT2-CT6-CT10-CT14-CT18-CT22 schedule. Heads Experiment Overall Design: were isolated by breaking up frozen flies and passing them through a set of Experiment Overall Design: sieves. RNA was prepared using guanidine-thiocyanate extraction followed by Experiment Overall Design: purification over a CsCl gradient. Additional purification of the RNA samples was Experiment Overall Design: achieved by applying them to Rneasy columns (Qiagen). Biotin-labeled cRNA Experiment Overall Design: probe was generated from 25 μg of purified RNA and hybridized as described Experiment Overall Design: previously (Wijnen H, Naef F, and Young MW, Methods Enzymol. 2005; 393: 341-365). Experiment Overall Design: For more information see also http://biorhythm.rockefeller.edu