Interpopulation differences in gene regulation in response to acute thermal stress
Ontology highlight
ABSTRACT: Background: Geographic variation in the thermal environment impacts a broad range of biochemical and physiological processes and can be a major selective force leading to local population adaptation. In the intertidal copepod Tigriopus californicus, populations along the coast of California show differences in thermal tolerance that are consistent with adaptation, i.e., southern populations withstand thermal stresses that are lethal to northern populations. To understand the genetic basis of these physiological differences, we use an RNA-seq approach to compare genome-wide patterns of gene expression in two populations known to differ in thermal tolerance. Results: Observed differences in gene expression between the southern (San Diego) and the northern (Santa Cruz) populations included both the number of affected loci as well as the identity of these loci. However, the most pronounced differences concerned the amplitude of up-regulation of genes producing heat shock proteins (Hsps) and genes involved in ubiquitination and proteolysis. Cuticle genes were up-regulated in SD but down-regulated in SC, and mitochondrial genes were downregulated in both populations. Among the hsp genes, orthologous pairs show markedly different thermal responses as the amplitude of hsp response was greatly elevated in the San Diego population, most notably in members of the hsp70 gene family. There was no evidence of accelerated evolution at the sequence level for hsp genes. Conclusions: Marked changes in gene expression were observed in response to acute sublethal thermal stress in the copepod T. californicus. Although some qualitative differences were observed between populations (e.g., cuticle gene regulation), the most pronounced differences involved the magnitude of induction of numerous hsp and ubiquitin genes. These differences in gene expression suggest that evolutionary divergence in the regulatory pathway(s) involved in acute temperature stress may offer at least a partial explanation of latitudinal trends in thermal tolerance observed in Tigriopus.
ORGANISM(S): Tigriopus californicus
PROVIDER: GSE38546 | GEO | 2012/09/11
SECONDARY ACCESSION(S): PRJNA168170
REPOSITORIES: GEO
ACCESS DATA