High contaminant loads in Lake Apopka mesocosms affect the ovarian transcriptome in largemouth bass [January]
Ontology highlight
ABSTRACT: Lake Apopka (Fl, USA) experienced heavy uses of organochlorine pesticides (OCPs) in the 1950s-1970 during an intense agricultural period. As a result, the region remains heavily contaminated and was declared a Superfund site by the US Environmental Protection Agency. Aquatic organisms inhabit the freshwater systems in and around Lake Apopka, however the impacts of sub chronic exposure to OCPs in this natural environment are not known. The objectives of this study were to determine the effects of the contamination on the reproductive axis of largemouth bass (LMB) (Micropterus salmoides). In October (2007), healthy LMB were stocked into natural mesocosms and remained in mesocosms before being sampled in January 2008 (at early oogenesis). Additional LMB were placed into mesocosms for 2 months in February (2008) and sampled in April (2008) (oocyte maturation). LMB placed in these mesocosms for four months had a 2-20X higher contaminant load for OCPs (e.g. DDE, dieldrin, methoxychlor) than LMB collected from reference sites. Gonadosomatic index for LMB collected in April from the mesocosms were not different that LMB from reference sites. Vitellogenin levels in LMB collected from the mesocosms in January and April were not significantly different than fish collected from Welaka in late vitellogenin or early maturation respectively. Steroids were depressed in mesocosm fish. Microarray analysis revealed that the expression profiles of genes in the LMB ovary were unique compared to LMB collected form reference sites. Transcripts that showed altered abundance in LMB from the mesocosms were insulin-like growth factor I and steroidogenic acute regulatory protein. Interestingly, differentially expressed transcripts showed a significant and positive correlation for LMB sampled in January and April despite the 3 month period in between samplings. Sub-network enrichment analysis for cellular processes showed that retinoic acid metabolism and germ-cell development were decreased in mesocosm-exposed fish but processes such as vitellogenesis, amino acid catabolism, granulosa cell function, vitamin D metabolism, and hormone biosynthesis were increased in mesocosm-exposed fish. These data suggest that (1) LMB from the mesocosms are exhibiting unique gene profiles that may impair normal reproduction and that (2) microarray analysis in the field can provide site specific information by discriminating LMB from reference and polluted sites.
ORGANISM(S): Micropterus salmoides
PROVIDER: GSE38773 | GEO | 2012/08/31
SECONDARY ACCESSION(S): PRJNA168988
REPOSITORIES: GEO
ACCESS DATA