Project description:DNA copy number profiling of 32 glioblastoma orthotopic xenografts Descriptive experiment, comparison of 39 glioblastoma tumors as orthotopic xenografts flow sorted for anueploidy
Project description:This SuperSeries is composed of the following subset Series: GSE38814: Glioblastoma Orthotopic Xenograft Transcriptome GSE38815: Glioblastoma Xenograft Comparative Genomic Hybridization Arrays Refer to individual Series
Project description:Amplification of the epidermal growth factor receptor (EGFR, A0 for non-amplified and A1 for amplified) gene is one of the most common oncogenic alterations in glioblastoma (45%) making it a prime target for therapy. However, small molecule inhibitors of the EGFR tyrosine kinase showed disappointing efficacy in clinical trials for glioblastoma. Here we report expression data for 33 samples including 6 GBM derived xenografts (3 controls and 3 treated by tyrosine kinase inhibitor gefitinib) and 27 glioblastoma tumors (11 controls and 16 treated by tyrosine kinase inhibitor gefitinib). Note that T0, T1 and T2 treatment types mean that control, Gefitinib treatment and Gefitinib treatment (but not according to protocol schedule), respectively.
Project description:Frequent discrepancies between preclinical and clinical results of anti-cancer agents demand a reliable translational platform that can precisely recapitulate the biology of human cancers. Another critical unmet need is the ability to predict therapeutic responses for individual patients. Toward this goal, we have established a library of orthotopic glioblastoma (GBM) xenograft models using surgical samples of GBM patients. These patient-specific GBM xenograft tumors recapitulate histopathological properties and maintain genomic characteristics of parental GBMs in situ. Furthermore, in vivo irradiation, chemotherapy, and targeted therapy of these xenograft tumors mimic the treatment response of parental GBMs. We also found that establishment of orthotopic xenograft models portends poor prognosis of GBM patients and identified the gene signatures and pathways signatures associated with the clinical aggressiveness of GBMs. Together, the patient-specific orthotopic GBM xenograft library represent the preclinically and clinically valuable “patient tumor’s phenocopy” that represents molecular and functional heterogeneity of GBMs. Gene expression profiling experiments were conducted for 58 human glioblastoma samples using Affymetrix Human Gene 1.0 ST arrays according to manufacturer's protocol.