Cell Intrinsic role of Cox-2 in pancreatic cancer development
Ontology highlight
ABSTRACT: Cyclooxygenase-2 (COX-2) is upregulated in pancreatic ductal adenocarcinomas (PDAC). However, how COX-2 promotes PDAC development is unclear. While previous studies have evaluated the efficacy of COX-2 inhibition via the use of non steroidal anti-inflammatory drugs (NSAIDs) or the COX-2 inhibitor celecoxib in PDAC models, none have addressed the cell intrinsic vs. microenvironment roles of COX-2 in modulating PDAC initiation and progression. We tested the cell intrinsic role of COX-2 in PDAC progression, using both loss-of-function and gain-of-function approaches. Cox-2 deletion in Pdx1+ pancreatic progenitor cells significantly delays the development of PDAC in mice with K-ras activation and Pten haploinsufficiency. Conversely, COX-2 over-expression promotes early onset and progression of PDAC in the K-ras mouse model. Loss of PTEN function is a critical factor in determining lethal PDAC onset and overall survival. Mechanistically, COX-2 over-expression increases P-AKT levels in the precursor lesions of Pdx1+;K-rasG12D/+;Ptenlox/+ mice in the absence of Pten LOH. In contrast, Cox-2 deletion in the same setting diminishes P-AKT levels and delays cancer progression. These data suggest an important cell intrinsic role for COX-2 in tumor initiation and progression through activation of the PI3K/AKT pathway. PDAC that is independent of intrinsic COX-2 expression eventually develops with decreased FKBP5 and increased GRP78 expression, two alternate pathways leading to AKT activation. Together, these results support a cell intrinsic role for COX-2 in PDAC development and suggest that, while anti-COX-2 therapy may delay the development and progression of PDAC, mechanisms known to increase chemoresistance through AKT activation must also be overcome.
ORGANISM(S): Mus musculus
PROVIDER: GSE38988 | GEO | 2012/06/29
SECONDARY ACCESSION(S): PRJNA169546
REPOSITORIES: GEO
ACCESS DATA