UNG shapes the specifity of AID-induced somatic hypermutation in non B cells
Ontology highlight
ABSTRACT: Secondary diversification of antibodies through somatic hypermutation (SHM) and class switch recombination (CSR) is a critical component of the immune response. Activation-induced deaminase (AID) initiates both processes by deaminating cytosine residues in immunoglobulin genes. The resulting U:G mismatch can be processed by alternative pathways to give rise to a mutation (SHM) or a DNA double-strand break (CSR). Central to this processing is the activity of uracil-N-glycosylase (UNG), an enzyme normally involved in error-free base excision repair. We used next generation sequencing to analyze the contribution of UNG to the resolution of AID-induced lesions. Loss- and gain-of-function experiments showed that UNG activity can promote both error-prone and high fidelity repair of U:G lesions. Unexpectedly, the balance between these alternative outcomes was influenced by the sequence context of the deaminated cytosine, with individual hotspots exhibiting higher susceptibility to UNG-triggered error-free or error-prone resolution. These results reveal UNG as a new molecular layer that shapes the specificity of AID-induced mutations and may provide new insights into the role of AID in cancer development.
Project description:Secondary diversification of antibodies through somatic hypermutation (SHM) and class switch recombination (CSR) is a critical component of the immune response. Activation-induced deaminase (AID) initiates both processes by deaminating cytosine residues in immunoglobulin genes. The resulting U:G mismatch can be processed by alternative pathways to give rise to a mutation (SHM) or a DNA double-strand break (CSR). Central to this processing is the activity of uracil-N-glycosylase (UNG), an enzyme normally involved in error-free base excision repair. We used next generation sequencing to analyze the contribution of UNG to the resolution of AID-induced lesions. Loss- and gain-of-function experiments showed that UNG activity can promote both error-prone and high fidelity repair of U:G lesions. Unexpectedly, the balance between these alternative outcomes was influenced by the sequence context of the deaminated cytosine, with individual hotspots exhibiting higher susceptibility to UNG-triggered error-free or error-prone resolution. These results reveal UNG as a new molecular layer that shapes the specificity of AID-induced mutations and may provide new insights into the role of AID in cancer development. Next Generation Sequencing analysis of mutations introduced by AID in activated B lymphocytes from WT and UNG-/- mice (n=4). Activated B cells from AID-/- mice (n=2) were used as negative controls.
Project description:Secondary diversification of antibodies through somatic hypermutation (SHM) and class switch recombination (CSR) is a critical component of the immune response. Activation-induced deaminase (AID) initiates both processes by deaminating cytosine residues in immunoglobulin genes. The resulting U:G mismatch can be processed by alternative pathways to give rise to a mutation (SHM) or a DNA double-strand break (CSR). Central to this processing is the activity of uracil-N-glycosylase (UNG), an enzyme normally involved in error-free base excision repair. We used next generation sequencing to analyze the contribution of UNG to the resolution of AID-induced lesions. Loss- and gain-of-function experiments showed that UNG activity can promote both error-prone and high fidelity repair of U:G lesions. Unexpectedly, the balance between these alternative outcomes was influenced by the sequence context of the deaminated cytosine, with individual hotspots exhibiting higher susceptibility to UNG-triggered error-free or error-prone resolution. These results reveal UNG as a new molecular layer that shapes the specificity of AID-induced mutations and may provide new insights into the role of AID in cancer development.
Project description:Secondary diversification of antibodies through somatic hypermutation (SHM) and class switch recombination (CSR) is a critical component of the immune response. Activation-induced deaminase (AID) initiates both processes by deaminating cytosine residues in immunoglobulin genes. The resulting U:G mismatch can be processed by alternative pathways to give rise to a mutation (SHM) or a DNA double-strand break (CSR). Central to this processing is the activity of uracil-N-glycosylase (UNG), an enzyme normally involved in error-free base excision repair. We used next generation sequencing to analyze the contribution of UNG to the resolution of AID-induced lesions. Loss- and gain-of-function experiments showed that UNG activity can promote both error-prone and high fidelity repair of U:G lesions. Unexpectedly, the balance between these alternative outcomes was influenced by the sequence context of the deaminated cytosine, with individual hotspots exhibiting higher susceptibility to UNG-triggered error-free or error-prone resolution. These results reveal UNG as a new molecular layer that shapes the specificity of AID-induced mutations and may provide new insights into the role of AID in cancer development. Next Generation Sequencing analysis of mutations introduced by AID in non B cells. NIH-3T3 cells were co-transduced with mOrangeSTOP and AID-ERM-bM-^@M-^Sexpressing vectors, together with Ugi (UNG inhibitor), UNG, or empty vector as control (n=3). Transduced cells were cultured in the presence of OHT during 11 d. AID-E58Q-ER vector (catalytically inactive form of AID) was used as a negative control in combination with the previously described constructions (n=3).
Project description:Somatic hypermutation (SHM) and class switch recombination (CSR) of immunoglobulin (Ig) genes are genomic modification events that occur in germinal center (GC) B cells and are initiated through deamination of cytidine to uracil by activation induced cytidine deaminase (AID). Resulting uracil-guanine (U-G) mismatches are subsequently processed by low-fidelity base-excision (BER) and mismatch repair (MMR) pathways to yield mutations and DNA strand lesions. Although off-target AID activity also contributes to oncogenic point mutations and chromosome translocations associated with B cell lymphomas, the role of downstream AID-associated DNA repair pathways in the pathogenesis of these lymphomas is unknown. Here, we show that simultaneous BER and MMR deficiency causes genomic instability and a shorter latency to the development of a BCL6-driven GC B cell lymphoma. In contrast, loss of BER alone is highly protective against B cell transformation while loss of MMR fosters the development of a variety of malignancies. These findings lend insight into a complex interplay between AID-associated BER and MMR pathways that produces a net protective effect against GC B cell lymphomagenesis. Representative B cell lymphomas from 3 IµHABcl6, 6 IµHABcl6 Ung-/- Msh2-/-, and 5 IµHABcl6 Msh2-/- mice were analyzed in this study. Total RNA was extracted from frozen tumor cells and processed according to Illumina standard protocols.
Project description:Most human B cell lymphomas (B-NHL) are derived from germinal centers (GCs), the structure where B-cells undergo class switch recombination (CSR) and somatic hypermutation (SHM) and are selected for high-affinity antibody production. The pathogenesis of B-NHL is associated with distinct genetic lesions, including chromosomal translocations and aberrant somatic hypermutation, which appear to arise from mistakes occurring during CSR and SHM. To ascertain the role of CSR and SHM in lymphomagenesis, we crossed three oncogene-driven (MYC, BCL6, MYC/BCL6) mouse models of B cell lymphoma with mice lacking activation-induced cytidine deaminase (AID), the enzyme required for both processes. We show that AID deficiency prevents BCL6-dependent, GC-derived B-NHL, while it has no impact on the formation of MYC-driven, pre-GC lymphomas. Accordingly, abrogation of AID is associated with the disappearance of both CSR- and SHM-mediated structural alterations, including cMYC-IgH chromosomal translocations and aberrant SHM. These results demonstrate that AID is required for GC-derived lymphomagenesis, providing direct support to the notion that errors in AID-mediated antigen-receptor gene modification events represent major contributors to the pathogenesis of human B-NHL. Keywords: Phenotypic characterization of tumors developing in oncogene-driven mouse models of lymphomas
Project description:This SuperSeries is composed of the following subset Series: GSE39108: UNG shapes the specifity of AID-induced somatic hypermutation in non B cells GSE39114: UNG shapes the specifity of AID-induced somatic hypermutation in B cells Refer to individual Series
Project description:Somatic hypermutation (SHM) and class switch recombination (CSR) of immunoglobulin (Ig) genes are genomic modification events that occur in germinal center (GC) B cells and are initiated through deamination of cytidine to uracil by activation induced cytidine deaminase (AID). Resulting uracil-guanine (U-G) mismatches are subsequently processed by low-fidelity base-excision (BER) and mismatch repair (MMR) pathways to yield mutations and DNA strand lesions. Although off-target AID activity also contributes to oncogenic point mutations and chromosome translocations associated with B cell lymphomas, the role of downstream AID-associated DNA repair pathways in the pathogenesis of these lymphomas is unknown. Here, we show that simultaneous BER and MMR deficiency causes genomic instability and a shorter latency to the development of a BCL6-driven GC B cell lymphoma. In contrast, loss of BER alone is highly protective against B cell transformation while loss of MMR fosters the development of a variety of malignancies. These findings lend insight into a complex interplay between AID-associated BER and MMR pathways that produces a net protective effect against GC B cell lymphomagenesis.
Project description:The activation induced cytosine deaminase (AID) mediates diversification of B cell immunoglobulin genes by the three distinct yet related processes of somatic hypermutation (SHM), class switch recombination (CSR), and gene conversion (GCV). SHM occurs in germinal center B cells, and the transcription factor Bcl6 is a key regulator of the germinal center B cell gene expression program, including expression of AID. To test the hypothesis that Bcl6 function is important for the process of SHM, we compared WT chicken DT40 B cells, which constitutively perform SHM/GCV, to their Bcl6-deficient counterparts. We found that Bcl6-deficient DT40 cells were unable to perform SHM and GCV despite enforced high level expression of AID and substantial levels of AID in the nucleus of the cells. To gain mechanistic insight into the GCV/SHM dependency on Bcl6, transcriptional features of a highly expressed SHM target gene were analyzed in Bcl6-sufficient and -deficient DT40 cells. No defect was observed in the accumulation of single stranded DNA in the target gene as a result of Bcl6 deficiency. In contrast, association of Spt5, an RNA polymerase II (Pol II) and AID binding factor, was strongly reduced at the target gene body relative to the transcription start site in Bcl6-deficient cells as compared to WT cells. However, partial reconstitution of Bcl6 function substantially reconstituted Spt5 association with the target gene body but did not restore detectable SHM. Our observations suggest that in the absence of Bcl6, Spt5 fails to associate efficiently with Pol II at SHM targets, perhaps precluding robust AID action on the SHM target DNA. Our data also suggest, however, that Spt5 binding is not sufficient for SHM of a target gene even in DT40 cells with strong expression of AID. Sequencing of the IgL V region and mutationally active GFP transgene in WT, Bcl6-/- Pax5R, and Bcl6-/- Pax5R Bcl6R chicken DT40 cells for evidence of AID dependent mutations. ChIP-seq proiles of RNA Pol II, Spt5, and pSer5 Pol II at a GFP transgene in WT, Bcl6-/- Pax5R, and Bcl6-/- Pax5R Bcl6R chicken DT40 cells.
Project description:The activation induced cytosine deaminase (AID) mediates diversification of B cell immunoglobulin genes by the three distinct yet related processes of somatic hypermutation (SHM), class switch recombination (CSR), and gene conversion (GCV). SHM occurs in germinal center B cells, and the transcription factor Bcl6 is a key regulator of the germinal center B cell gene expression program, including expression of AID. To test the hypothesis that Bcl6 function is important for the process of SHM, we compared WT chicken DT40 B cells, which constitutively perform SHM/GCV, to their Bcl6-deficient counterparts. We found that Bcl6-deficient DT40 cells were unable to perform SHM and GCV despite enforced high level expression of AID and substantial levels of AID in the nucleus of the cells. To gain mechanistic insight into the GCV/SHM dependency on Bcl6, transcriptional features of a highly expressed SHM target gene were analyzed in Bcl6-sufficient and -deficient DT40 cells. No defect was observed in the accumulation of single stranded DNA in the target gene as a result of Bcl6 deficiency. In contrast, association of Spt5, an RNA polymerase II (Pol II) and AID binding factor, was strongly reduced at the target gene body relative to the transcription start site in Bcl6-deficient cells as compared to WT cells. However, partial reconstitution of Bcl6 function substantially reconstituted Spt5 association with the target gene body but did not restore detectable SHM. Our observations suggest that in the absence of Bcl6, Spt5 fails to associate efficiently with Pol II at SHM targets, perhaps precluding robust AID action on the SHM target DNA. Our data also suggest, however, that Spt5 binding is not sufficient for SHM of a target gene even in DT40 cells with strong expression of AID.
Project description:Activation-induced cytidine deaminase (AID) initiates both somatic hypermutation (SHM) for antibody affinity maturation and DNA breakage for antibody class switch recombination (CSR) via transcription-dependent cytidine deamination of single stranded DNA targets. While largely specific for immunglobulin genes, AID also acts on a limited set of off-targets, generating oncogenic translocations and mutations that contribute to B cell lymphoma. How AID is recruited to off-targets has been a long-standing mystery. Based on deep GRO-Seq studies of mouse and human B lineage cells activated for CSR or SHM, we report that most robust AID off-target translocations occur within highly focal regions of target genes in which sense and antisense transcription converge. Moreover, we found that such AID-targeting "convergent" transcription arises from antisense transcription that emanates from Super-Enhancers within sense transcribed gene bodies. Our findings provide a mechanistic explanation for AID off-targeting to a small subset of mostly lineage-specific genes in activated B cells. We performed GRO-Seq and H3K27Ac ChIP-Seq with different B lineage cell types and MEF cells to find the signatures associated with AID targeting.