Expression data of WHV/c-myc transgenic mice at preneoplastic and neoplastic stages
Ontology highlight
ABSTRACT: The WHV/c-myc transgenic mouse is an animal model of hepatocarcinogenesis that can exquisitely mimic the cancer staging in human Hepatocellular carcinoma (HCC), in which the c-myc oncogene is activated by adjacent woodchuck hepatitis virus (WHV) DNA sequences. Compared to other models of c-myc transgenic mice, WHV/c-myc mice stably develop HCC with a relatively short latent period of 8 to 12 months, with a high (near 100%) tumor incidence. The aim of this study was to discover new HCC biomarkers and analyze expression patterns of selected candidate biomarkers prior to liver tumor onset by employing WHV/c-myc transgenic mice.
Project description:The WHV/c-myc transgenic mouse is an animal model of hepatocarcinogenesis that can exquisitely mimic the cancer staging in human Hepatocellular carcinoma (HCC), in which the c-myc oncogene is activated by adjacent woodchuck hepatitis virus (WHV) DNA sequences. Compared to other models of c-myc transgenic mice, WHV/c-myc mice stably develop HCC with a relatively short latent period of 8 to 12 months, with a high (near 100%) tumor incidence. The aim of this study was to discover new HCC biomarkers and analyze expression patterns of selected candidate biomarkers prior to liver tumor onset by employing WHV/c-myc transgenic mice. Using Affymetrix Mouse Genome 430 2.0 Expression Arrays, we studied hepatic gene expression profiles of WHV/c-myc transgenic mice at 5 months and 11 months, age-matched wild-type C57/BL6 mice were used as controls. At 5 months, the livers of transgenic mice exhibited mild to moderate hepatocyte dysplasia, this time point represents the preneoplastic stage. At 11 months, the tumors were visualized in WHV/c-myc transgenic mice and consisted mainly of well-differentiated, trabecular-type HCCs, and this time point was considered as neoplastic stage.
Project description:The Eastern woodchuck (Marmota monax) is naturally infected with woodchuck hepatitis virus (WHV), a hepadnavirus closely related to the human hepatitis B virus (HBV). The woodchuck is used as an animal model for studying chronic hepatitis B (CHB) and HBV-associated hepatocellular carcinoma (HCC) in humans, but the lack of sequence information has hitherto precluded functional genomics analysis. To address this major limitation of the model, we report here the sequencing, assembly and annotation of the woodchuck transcriptome, together with the generation of custom woodchuck microarrays. Using this new platform, we characterized the transcriptional response to persistent WHV infection and WHV-induced HCC. This revealed that chronic WHV infection, like HBV, is associated with (i) a limited intrahepatic type I interferon response, (ii) intrahepatic induction of markers associated with T cell exhaustion, (iii) elevated levels of suppressor of cytokine signaling 3 (SOCS3) in the liver, and (iv) intrahepatic accumulation of neutrophils. Underscoring the translational value of the woodchuck model, this study also determined that WHV-induced HCC shares molecular characteristics with a subtype of human HCC with poor prognosis. Conclusion: Our data establish the translational value of the woodchuck model and provide new insights into immune pathways which may play a role either in the persistence of HBV infection or the sequelae of CHB.
Project description:The Eastern woodchuck (Marmota monax) is naturally infected with woodchuck hepatitis virus (WHV), a hepadnavirus closely related to the human hepatitis B virus (HBV). The woodchuck is used as an animal model for studying chronic hepatitis B (CHB) and HBV-associated hepatocellular carcinoma (HCC) in humans, but the lack of sequence information has hitherto precluded functional genomics analysis. To address this major limitation of the model, we report here the sequencing, assembly and annotation of the woodchuck transcriptome, together with the generation of custom woodchuck microarrays. Using this new platform, we characterized the transcriptional response to persistent WHV infection and WHV-induced HCC. This revealed that chronic WHV infection, like HBV, is associated with (i) a limited intrahepatic type I interferon response, (ii) intrahepatic induction of markers associated with T cell exhaustion, (iii) elevated levels of suppressor of cytokine signaling 3 (SOCS3) in the liver, and (iv) intrahepatic accumulation of neutrophils. Underscoring the translational value of the woodchuck model, this study also determined that WHV-induced HCC shares molecular characteristics with a subtype of human HCC with poor prognosis. Conclusion: Our data establish the translational value of the woodchuck model and provide new insights into immune pathways which may play a role either in the persistence of HBV infection or the sequelae of CHB.
Project description:The Eastern woodchuck (Marmota monax) is naturally infected with woodchuck hepatitis virus (WHV), a hepadnavirus closely related to the human hepatitis B virus (HBV). The woodchuck is used as an animal model for studying chronic hepatitis B (CHB) and HBV-associated hepatocellular carcinoma (HCC) in humans, but the lack of sequence information has hitherto precluded functional genomics analysis. To address this major limitation of the model, we report here the sequencing, assembly and annotation of the woodchuck transcriptome, together with the generation of custom woodchuck microarrays. Using this new platform, we characterized the transcriptional response to persistent WHV infection and WHV-induced HCC. This revealed that chronic WHV infection, like HBV, is associated with (i) a limited intrahepatic type I interferon response, (ii) intrahepatic induction of markers associated with T cell exhaustion, (iii) elevated levels of suppressor of cytokine signaling 3 (SOCS3) in the liver, and (iv) intrahepatic accumulation of neutrophils. Underscoring the translational value of the woodchuck model, this study also determined that WHV-induced HCC shares molecular characteristics with a subtype of human HCC with poor prognosis. Conclusion: Our data establish the translational value of the woodchuck model and provide new insights into immune pathways which may play a role either in the persistence of HBV infection or the sequelae of CHB.
Project description:The Eastern woodchuck (Marmota monax) is naturally infected with woodchuck hepatitis virus (WHV), a hepadnavirus closely related to the human hepatitis B virus (HBV). The woodchuck is used as an animal model for studying chronic hepatitis B (CHB) and HBV-associated hepatocellular carcinoma (HCC) in humans, but the lack of sequence information has hitherto precluded functional genomics analysis. To address this major limitation of the model, we report here the sequencing, assembly and annotation of the woodchuck transcriptome, together with the generation of custom woodchuck microarrays. Using this new platform, we characterized the transcriptional response to persistent WHV infection and WHV-induced HCC. This revealed that chronic WHV infection, like HBV, is associated with (i) a limited intrahepatic type I interferon response, (ii) intrahepatic induction of markers associated with T cell exhaustion, (iii) elevated levels of suppressor of cytokine signaling 3 (SOCS3) in the liver, and (iv) intrahepatic accumulation of neutrophils. Underscoring the translational value of the woodchuck model, this study also determined that WHV-induced HCC shares molecular characteristics with a subtype of human HCC with poor prognosis. Conclusion: Our data establish the translational value of the woodchuck model and provide new insights into immune pathways which may play a role either in the persistence of HBV infection or the sequelae of CHB.
Project description:The Eastern woodchuck (Marmota monax) is naturally infected with woodchuck hepatitis virus (WHV), a hepadnavirus closely related to the human hepatitis B virus (HBV). The woodchuck is used as an animal model for studying chronic hepatitis B (CHB) and HBV-associated hepatocellular carcinoma (HCC) in humans, but the lack of sequence information has hitherto precluded functional genomics analysis. To address this major limitation of the model, we report here the sequencing, assembly and annotation of the woodchuck transcriptome, together with the generation of custom woodchuck microarrays. Using this new platform, we characterized the transcriptional response to persistent WHV infection and WHV-induced HCC. This revealed that chronic WHV infection, like HBV, is associated with (i) a limited intrahepatic type I interferon response, (ii) intrahepatic induction of markers associated with T cell exhaustion, (iii) elevated levels of suppressor of cytokine signaling 3 (SOCS3) in the liver, and (iv) intrahepatic accumulation of neutrophils. Underscoring the translational value of the woodchuck model, this study also determined that WHV-induced HCC shares molecular characteristics with a subtype of human HCC with poor prognosis. Conclusion: Our data establish the translational value of the woodchuck model and provide new insights into immune pathways which may play a role either in the persistence of HBV infection or the sequelae of CHB. Custom microarrays, generated from sequences obtained in transcriptome sequencing of woodchuck liver and PBMCs, were used to examine liver gene expression in animals chronically infected with WHV (n=13), animals that had resolved WHV infection at least 12 months prior (R; n=11; range 12-18 months), and uninfected animals (U; n=10). Multiple technical replicates per woodchuck sample are included.
Project description:The Eastern woodchuck (Marmota monax) is naturally infected with woodchuck hepatitis virus (WHV), a hepadnavirus closely related to the human hepatitis B virus (HBV). The woodchuck is used as an animal model for studying chronic hepatitis B (CHB) and HBV-associated hepatocellular carcinoma (HCC) in humans, but the lack of sequence information has hitherto precluded functional genomics analysis. To address this major limitation of the model, we report here the sequencing, assembly and annotation of the woodchuck transcriptome, together with the generation of custom woodchuck microarrays. Using this new platform, we characterized the transcriptional response to persistent WHV infection and WHV-induced HCC. This revealed that chronic WHV infection, like HBV, is associated with (i) a limited intrahepatic type I interferon response, (ii) intrahepatic induction of markers associated with T cell exhaustion, (iii) elevated levels of suppressor of cytokine signaling 3 (SOCS3) in the liver, and (iv) intrahepatic accumulation of neutrophils. Underscoring the translational value of the woodchuck model, this study also determined that WHV-induced HCC shares molecular characteristics with a subtype of human HCC with poor prognosis. Conclusion: Our data establish the translational value of the woodchuck model and provide new insights into immune pathways which may play a role either in the persistence of HBV infection or the sequelae of CHB. Custom microarrays, generated from sequences obtained in transcriptome sequencing of woodchuck liver and PBMCs, were used to examine kidney gene expression in animals chronically infected with WHV (n=5), animals that had resolved WHV infection at least 12 months prior (R; n=4; range 12-18 months), and uninfected animals (U; n=3). Multiple technical replicates per woodchuck sample are included.
Project description:The Eastern woodchuck (Marmota monax) is naturally infected with woodchuck hepatitis virus (WHV), a hepadnavirus closely related to the human hepatitis B virus (HBV). The woodchuck is used as an animal model for studying chronic hepatitis B (CHB) and HBV-associated hepatocellular carcinoma (HCC) in humans, but the lack of sequence information has hitherto precluded functional genomics analysis. To address this major limitation of the model, we report here the sequencing, assembly and annotation of the woodchuck transcriptome, together with the generation of custom woodchuck microarrays. Using this new platform, we characterized the transcriptional response to persistent WHV infection and WHV-induced HCC. This revealed that chronic WHV infection, like HBV, is associated with (i) a limited intrahepatic type I interferon response, (ii) intrahepatic induction of markers associated with T cell exhaustion, (iii) elevated levels of suppressor of cytokine signaling 3 (SOCS3) in the liver, and (iv) intrahepatic accumulation of neutrophils. Underscoring the translational value of the woodchuck model, this study also determined that WHV-induced HCC shares molecular characteristics with a subtype of human HCC with poor prognosis. Conclusion: Our data establish the translational value of the woodchuck model and provide new insights into immune pathways which may play a role either in the persistence of HBV infection or the sequelae of CHB. Custom microarrays, generated from sequences obtained in transcriptome sequencing of woodchuck liver and PBMCs, were used to examine spleen gene expression in animals chronically infected with WHV (n=4), animals that had resolved WHV infection at least 12 months prior (R; n=4; range 12-18 months), and uninfected animals (U; n=2). Multiple technical replicates per woodchuck sample are included.
Project description:The Eastern woodchuck (Marmota monax) is naturally infected with woodchuck hepatitis virus (WHV), a hepadnavirus closely related to the human hepatitis B virus (HBV). The woodchuck is used as an animal model for studying chronic hepatitis B (CHB) and HBV-associated hepatocellular carcinoma (HCC) in humans, but the lack of sequence information has hitherto precluded functional genomics analysis. To address this major limitation of the model, we report here the sequencing, assembly and annotation of the woodchuck transcriptome, together with the generation of custom woodchuck microarrays. Using this new platform, we characterized the transcriptional response to persistent WHV infection and WHV-induced HCC. This revealed that chronic WHV infection, like HBV, is associated with (i) a limited intrahepatic type I interferon response, (ii) intrahepatic induction of markers associated with T cell exhaustion, (iii) elevated levels of suppressor of cytokine signaling 3 (SOCS3) in the liver, and (iv) intrahepatic accumulation of neutrophils. Underscoring the translational value of the woodchuck model, this study also determined that WHV-induced HCC shares molecular characteristics with a subtype of human HCC with poor prognosis. Conclusion: Our data establish the translational value of the woodchuck model and provide new insights into immune pathways which may play a role either in the persistence of HBV infection or the sequelae of CHB. Custom microarrays, generated from sequences obtained in transcriptome sequencing of woodchuck liver and PBMCs, were used to examine non-tumor vs. tumor gene expression in liver samples obtained from animals chronically infected with WHV (n=13). Multiple technical replicates per woodchuck sample are included.
Project description:We characterized the identity of hepatic macrophages from the uninvolved liver of a WHV-positive (area with no visible tumor) tumor bearing woodchuck that take up NPs using RNA-sequencing (RNA-seq). Data from WHV-infected animal from experiment 3.