DNA Methylation Profiling of Human Saliva
Ontology highlight
ABSTRACT: Background: Low birth weight is associated with an increased adult metabolic disease risk. It is widely discussed that poor intrauterine conditions could induce long-lasting epigenetic modifications, leading to systemic changes in regulation of metabolic genes. In a unique cohort of 17 monozygotic (MZ) monochorionic female twins very discordant for birth weight (relative differences ranging from 21.3-35.7%), we examined if adverse prenatal growth conditions experienced by the smaller co-twins lead to systemic long-lasting DNA methylation changes. Genome-wide DNA methylation profiles were acquired from saliva DNA using the Infinium HumanMethylation450 BeadChip, targeting ~2% of all CpGs in the genome. Results: Overall, co-twins showed very similar genome-wide DNA methylation profiles. Since observed differences were almost exclusively caused by variable cellular composition, an original marker-based adjustment strategy was developed to eliminate such variation at affected CpGs. Among adjusted and unchanged CpGs 3153 were differentially methylated between the heavy and light co-twins at nominal significance (p<0.01), of which 45 showed absolute mean β-value differences >0.05 (max=0.08). Deep bisulfite sequencing of eight such loci revealed that differences remained in the range of technical variation, arguing against a reproducible biological effect. Analysis of methylation in repetitive elements using methylation-dependent primer extension assays also indicated no significant intra-pair differences. Conclusions: Severe intrauterine growth differences observed within these MZ twins are not associated with long-lasting DNA methylation differences in cells composing saliva, detectable with up-to-date technologies. Additionally, our results indicate that uneven cell type composition can lead to spurious results and should be addressed in epigenomic studies.
ORGANISM(S): Homo sapiens
PROVIDER: GSE39560 | GEO | 2013/05/13
REPOSITORIES: GEO
ACCESS DATA