Project description:Meis, Prep and Pbx1 TALE homeoproteins interactions with Hox proteins are essential for development and disease. Although Meis and Prep behave similarly in vitro, their in vivo activities remain largely unexplored. We show that Prep and Meis interact with largely independent sets of genomic sites and select different DNA binding sequences, with Prep associating mostly with promoters and house-keeping genes and Meis with promoter-remote regions and developmental genes. Hox target sequences associate strongly with Meis but not with Prep binding sites, while Pbx1 cooperates with both Prep and Meis. Accordingly, Meis1 shows strong genetic interaction with Pbx1 but not with Prep1. Meis1 and Prep1 nonetheless co-regulate a subset of genes, predominantly through opposing effects. Notably, the TALE homeoprotein binding profile subdivides Hox clusters into two domains differentially regulated by Meis1 and Prep1. After duplication of the ancestral gene, Meis and Prep thus specialized their interactions but maintained significant regulatory coordination.
Project description:Meis, Prep and Pbx1 TALE homeoproteins interactions with Hox proteins are essential for development and disease. Although Meis and Prep behave similarly in vitro, their in vivo activities remain largely unexplored. We show that Prep and Meis interact with largely independent sets of genomic sites and select different DNA binding sequences, with Prep associating mostly with promoters and house-keeping genes and Meis with promoter-remote regions and developmental genes. Hox target sequences associate strongly with Meis but not with Prep binding sites, while Pbx1 cooperates with both Prep and Meis. Accordingly, Meis1 shows strong genetic interaction with Pbx1 but not with Prep1. Meis1 and Prep1 nonetheless co-regulate a subset of genes, predominantly through opposing effects. Notably, the TALE homeoprotein binding profile subdivides Hox clusters into two domains differentially regulated by Meis1 and Prep1. After duplication of the ancestral gene, Meis and Prep thus specialized their interactions but maintained significant regulatory coordination.
Project description:Meis, Prep and Pbx1 TALE homeoproteins interactions with Hox proteins are essential for development and disease. Although Meis and Prep behave similarly in vitro, their in vivo activities remain largely unexplored. We show that Prep and Meis interact with largely independent sets of genomic sites and select different DNA binding sequences, with Prep associating mostly with promoters and house-keeping genes and Meis with promoter-remote regions and developmental genes. Hox target sequences associate strongly with Meis but not with Prep binding sites, while Pbx1 cooperates with both Prep and Meis. Accordingly, Meis1 shows strong genetic interaction with Pbx1 but not with Prep1. Meis1 and Prep1 nonetheless co-regulate a subset of genes, predominantly through opposing effects. Notably, the TALE homeoprotein binding profile subdivides Hox clusters into two domains differentially regulated by Meis1 and Prep1. After duplication of the ancestral gene, Meis and Prep thus specialized their interactions but maintained significant regulatory coordination. RNA-seq of 2 Meis1 and Prep1 loss of function mutants in E11.5 C57BL/6 embryonic mice
Project description:Meis, Prep and Pbx1 TALE homeoproteins interactions with Hox proteins are essential for development and disease. Although Meis and Prep behave similarly in vitro, their in vivo activities remain largely unexplored. We show that Prep and Meis interact with largely independent sets of genomic sites and select different DNA binding sequences, with Prep associating mostly with promoters and house-keeping genes and Meis with promoter-remote regions and developmental genes. Hox target sequences associate strongly with Meis but not with Prep binding sites, while Pbx1 cooperates with both Prep and Meis. Accordingly, Meis1 shows strong genetic interaction with Pbx1 but not with Prep1. Meis1 and Prep1 nonetheless co-regulate a subset of genes, predominantly through opposing effects. Notably, the TALE homeoprotein binding profile subdivides Hox clusters into two domains differentially regulated by Meis1 and Prep1. After duplication of the ancestral gene, Meis and Prep thus specialized their interactions but maintained significant regulatory coordination. ChIP-seq of 3 TALE proteins in E11.5 C57BL/6 embryonic mice