Project description:BACKGROUND: By regulating digestion and absorption of nutrients and providing a barrier against the external environment the intestine provides a crucial contribution to the maintenance of health. To what extent aging-related changes in the intestinal system contribute to the functional decline associated with aging is still under debate. METHODS: Young (4 M) and old (21 M) male C57BL/6J mice were fed a control low-fat (10E%) or a high-fat diet (45E%) for 2 weeks. During the intervention gross energy intake and energy excretion in the feces were measured. After sacrifice the small and large intestine were isolated and the small intestine was divided in three equal parts. Swiss rolls were prepared of each of the isolated segments for histological analysis and the luminal content was isolated to examine alterations in the microflora with 16S rRNA Q-PCR. Furthermore, mucosal scrapings were isolated from each segment to determine differential gene expression by microarray analysis and global DNA methylation by pyrosequencing. RESULTS: Digestible energy intake was similar between the two age groups on both the control and the high-fat diet. Microarray analysis on RNA from intestinal scrapings showed no marked changes in expression of genes involved in metabolic processes. Decreased expression of Cubilin was observed in the intestine of 21-month-old mice, which might contribute to aging-induced vitamin B12 deficiency. Furthermore, microarray data analysis revealed enhanced expression of a large number of genes involved in immune response and inflammation in the colon, but not in the small intestine of the 21-month-old mice. Aging-induced global hypomethylation was observed in the colon and the distal part of the small intestine, but not in the first two sections of the small intestine. CONCLUSION: In 21-month old mice the most pronounced effects of aging were observed in the colon, whereas very few changes were observed in the small intestine.
Project description:By regulating digestion and absorption of nutrients and providing a barrier against the external environment the intestine provides a crucial contribution to the maintenance of health. To what extent aging-related changes in the intestinal system contribute to the impaired health of the aging body is still under debate. Young (4 months) and old (21 months) male C57BL/6J mice were fed a control low-fat (10E%) or a high-fat diet (45E%) for 2 weeks. During the intervention gross energy intake and energy excretion in the feces were measured. After sacrifice the small and large intestine were isolated whereby the small intestine was divided in three equal parts. Of each of the isolated segments Swiss rolls were prepared for histological analysis and the luminal content was isolated to examine alterations in the microflora with 16S rRNA Q-PCR. Furthermore, mucosal scrapings were isolated from each segment to determine differential gene expression by microarray analysis and global DNA methylation by pyrosequencing. Digestible energy intake was similar between the two age groups on both the control and the high-fat diet implying that macronutrient metabolism is not affected in 21-month-old mice. This observation was supported by the fact that the microarray analysis on RNA from intestinal scrapings showed no marked changes in expression of genes involved in metabolic processes. Decreased expression of Cubilin was observed in the intestine of 21-month-old mice, which might contribute to aging-induced vitamin B12 deficiency. Furthermore, microarray data analysis revealed enhanced expression of a high number of genes involved in immune response and inflammation in the colon, but not in the small intestine of the 21-month-old mice. Aging-induced global hypomethylation was observed in the colon and the distal part of the small intestine, but not in the first two sections of the small intestine. In 21-month old mice the most pronounced effects of aging was observed in the colon, limited changes were observed in the small intestine. Young (4 months) and old (21 months) C57BL/6J mice were fed a low-fat (10E%) diet or high-fat (45%E) diet for 2 weeks. After the diet intervention period, the animals were killed and scrapings were made of the proximal, middle and distal part of the small intestine. Total RNA was isolated, pooled and subjected to gene expression profiling.
Project description:By regulating digestion and absorption of nutrients and providing a barrier against the external environment the intestine provides a crucial contribution to the maintenance of health. To what extent aging-related changes in the intestinal system contribute to the impaired health of the aging body is still under debate. Young (4 months) and old (21 months) male C57BL/6J mice were fed a control low-fat (10E%) or a high-fat diet (45E%) for 2 weeks. During the intervention gross energy intake and energy excretion in the feces were measured. After sacrifice the small and large intestine were isolated whereby the small intestine was divided in three equal parts. Of each of the isolated segments Swiss rolls were prepared for histological analysis and the luminal content was isolated to examine alterations in the microflora with 16S rRNA Q-PCR. Furthermore, mucosal scrapings were isolated from each segment to determine differential gene expression by microarray analysis and global DNA methylation by pyrosequencing. Digestible energy intake was similar between the two age groups on both the control and the high-fat diet implying that macronutrient metabolism is not affected in 21-month-old mice. This observation was supported by the fact that the microarray analysis on RNA from intestinal scrapings showed no marked changes in expression of genes involved in metabolic processes. Decreased expression of Cubilin was observed in the intestine of 21-month-old mice, which might contribute to aging-induced vitamin B12 deficiency. Furthermore, microarray data analysis revealed enhanced expression of a high number of genes involved in immune response and inflammation in the colon, but not in the small intestine of the 21-month-old mice. Aging-induced global hypomethylation was observed in the colon and the distal part of the small intestine, but not in the first two sections of the small intestine. In 21-month old mice the most pronounced effects of aging was observed in the colon, limited changes were observed in the small intestine.
Project description:By regulating digestion and absorption of nutrients and providing a barrier against the external environment the intestine provides a crucial contribution to the maintenance of health. To what extent aging-related changes in the intestinal system contribute to the impaired health of the aging body is still under debate. Young (4 months) and old (21 months) male C57BL/6J mice were fed a control low-fat (10E%) or a high-fat diet (45E%) for 2 weeks. During the intervention gross energy intake and energy excretion in the feces were measured. After sacrifice the small and large intestine were isolated whereby the small intestine was divided in three equal parts. Of each of the isolated segments Swiss rolls were prepared for histological analysis and the luminal content was isolated to examine alterations in the microflora with 16S rRNA Q-PCR. Furthermore, mucosal scrapings were isolated from each segment to determine differential gene expression by microarray analysis and global DNA methylation by pyrosequencing. Digestible energy intake was similar between the two age groups on both the control and the high-fat diet implying that macronutrient metabolism is not affected in 21-month-old mice. This observation was supported by the fact that the microarray analysis on RNA from intestinal scrapings showed no marked changes in expression of genes involved in metabolic processes. Decreased expression of Cubilin was observed in the intestine of 21-month-old mice, which might contribute to aging-induced vitamin B12 deficiency. Furthermore, microarray data analysis revealed enhanced expression of a high number of genes involved in immune response and inflammation in the colon, but not in the small intestine of the 21-month-old mice. Aging-induced global hypomethylation was observed in the colon and the distal part of the small intestine, but not in the first two sections of the small intestine. In 21-month old mice the most pronounced effects of aging was observed in the colon, limited changes were observed in the small intestine. Young (4M) and old (21M) wild type C57BL/6J mice were fed a low-fat diet or high-fat diet for 2 weeks. After the diet intervention period, the animals were killed and scrapings were made of the colon. Total RNA was isolated and subjected to gene expression profiling.
Project description:By regulating digestion and absorption of nutrients and providing a barrier against the external environment the intestine provides a crucial contribution to the maintenance of health. To what extent aging-related changes in the intestinal system contribute to the impaired health of the aging body is still under debate. Young (4 months) and old (21 months) male C57BL/6J mice were fed a control low-fat (10E%) or a high-fat diet (45E%) for 2 weeks. During the intervention gross energy intake and energy excretion in the feces were measured. After sacrifice the small and large intestine were isolated whereby the small intestine was divided in three equal parts. Of each of the isolated segments Swiss rolls were prepared for histological analysis and the luminal content was isolated to examine alterations in the microflora with 16S rRNA Q-PCR. Furthermore, mucosal scrapings were isolated from each segment to determine differential gene expression by microarray analysis and global DNA methylation by pyrosequencing. Digestible energy intake was similar between the two age groups on both the control and the high-fat diet implying that macronutrient metabolism is not affected in 21-month-old mice. This observation was supported by the fact that the microarray analysis on RNA from intestinal scrapings showed no marked changes in expression of genes involved in metabolic processes. Decreased expression of Cubilin was observed in the intestine of 21-month-old mice, which might contribute to aging-induced vitamin B12 deficiency. Furthermore, microarray data analysis revealed enhanced expression of a high number of genes involved in immune response and inflammation in the colon, but not in the small intestine of the 21-month-old mice. Aging-induced global hypomethylation was observed in the colon and the distal part of the small intestine, but not in the first two sections of the small intestine. In 21-month old mice the most pronounced effects of aging was observed in the colon, limited changes were observed in the small intestine.
Project description:A high caloric diet, in conjunction with low levels of physical activity, promotes obesity. Many studies are available regarding the relation between dietary saturated fats and the etiology of obesity, but most focus on liver, muscle and white adipose tissue. Furthermore, the majority of transcriptomic studies seek to identify linear effects of an external stimulus on gene expression, although such an assumption does not necessarily hold. Our work assesses the dose-dependent effects of dietary fat intake on differential gene expression in the proximal, middle and distal sections of the small intestine in C57BL/6J mice. Gene expression is analyzed in terms of either linear or nonlinear responses to fat intake.The highest number of differentially expressed genes was observed in the middle section. In all intestine sections, most of the identified processes exhibited a linear response to increasing fat intake. The relative importance of logarithmic and exponential responses was higher in the proximal and distal sections, respectively. Functional enrichment analysis highlighted a constantly linear regulation of acute-phase response along the whole small intestine, with up-regulation of Serpina1b. The study of gene expression showed that exponential down-regulation of cholesterol transport in the middle section is coupled with logarithmic up-regulation of cholesterol homeostasis. A shift from linear to exponential response was observed in genes involved in the negative regulation of caspase activity, from middle to distal section (e.g., Birc5, up-regulated).The transcriptomic signature associated with inflammatory processes preserved a linear response in the whole small intestine (e.g., up-regulation of Serpina1b). Processes related to cholesterol homeostasis were particularly active in the middle small intestine and only the highest fat intake down-regulated cholesterol transport and efflux (with a key role played by the down-regulation of ATP binding cassette transporters). Characterization of nonlinear patterns of gene expression triggered by different levels of dietary fat is an absolute novelty in intestinal studies. This approach helps identifying which processes are overloaded (i.e., positive, logarithmic regulation) or arrested (i.e., negative, exponential regulation) in response to excessive fat intake, and can shed light on the relationships linking lipid intake to obesity and its associated molecular disturbances.
Project description:BackgroundThere is increasing appreciation for sexually dimorphic effects, but the molecular mechanisms underlying these effects are only partially understood. In the present study, we explored transcriptomics and epigenetic differences in the small intestine and colon of prepubescent male and female mice. In addition, the microbiota composition of the colonic luminal content has been examined.MethodsAt postnatal day 14, male and female C57BL/6 mice were sacrificed and the small intestine, colon and content of luminal colon were isolated. Gene expression of both segments of the intestine was analysed by microarray analysis. DNA methylation of the promoter regions of selected sexually dimorphic genes was examined by pyrosequencing. Composition of the microbiota was explored by deep sequencing.ResultsSexually dimorphic genes were observed in both segments of the intestine of 2-week-old mouse pups, with a stronger effect in the small intestine. Amongst the total of 349 genes displaying a sexually dimorphic effect in the small intestine and/or colon, several candidates exhibited a previously established function in the intestine (i.e. Nts, Nucb2, Alox5ap and RetnlĪ³). In addition, differential expression of genes linked to intestinal bowel disease (i.e. Ccr3, Ccl11 and Tnfr) and colorectal cancer development (i.e. Wt1 and Mmp25) was observed between males and females. Amongst the genes displaying significant sexually dimorphic expression, nine genes were histone-modifying enzymes, suggesting that epigenetic mechanisms might be a potential underlying regulatory mechanism. However, our results reveal no significant changes in DNA methylation of analysed CpGs within the selected differentially expressed genes. With respect to the bacterial community composition in the colon, a dominant effect of litter origin was found but no significant sex effect was detected. However, a sex effect on the dominance of specific taxa was observed.ConclusionsThis study reveals molecular dissimilarities between males and females in the small intestine and colon of prepubescent mice, which might underlie differences in physiological functioning and in disease predisposition in the two sexes.
Project description:This objective of this study was to investigate the toxicogenomics and the spatial regulation of global gene expression profiles elicited by endoplasmic reticulum (ER) stress inducer tunicamycin (TM) in mouse small intestine and liver as well as to identify TM-modulated nuclear factor-E2-related factor 2 (Nrf2)-dependent genes. Gene expression profiles were analyzed using 45,000 Affymetrix mouse genome 430 2.0 array and GeneSpring 7.2 software. Microarray results were validated by quantitative real-time reverse transcription-PCR analyses. Clusters of genes that were either induced or suppressed more than two-fold by TM treatment compared with vehicle in C57BL/6J/Nrf2 (-/-; knockout) and C57BL/6J Nrf2 (+/+; wildtype) mice genotypes were identified. Amongst these, in small intestine and liver, 1291 and 750 genes, respectively, were identified as Nrf2-dependent and upregulated, and 1370 and 943 genes, respectively, as Nrf2-dependent and downregulated. Based on their biological functions, these genes can be categorized into molecular chaperones and heat shock proteins, ubiquitination/proteolysis, apoptosis/cell cycle, electron transport, detoxification, cell growth/differentiation, signaling molecules/interacting partners, kinases and phosphatases, transport, biosynthesis/metabolism, nuclear assembly and processing, and genes related to calcium and glucose homeostasis. Phase II detoxification/antioxidant genes as well as putative interacting partners of Nrf2 such as nuclear corepressors and coactivators, were also identified as Nrf2-dependent genes. The identification of TM-regulated and Nrf2-dependent genes in the unfolded protein response to ER stress not only provides potential novel insights into the gestalt biological effects of TM on the toxicogenomics and spatial regulation of global gene expression profiles in cancer pharmacology and toxicology, but also points to the pivotal role of Nrf2 in these biological processes.
Project description:BACKGROUND: Obesity and insulin resistance are two major risk factors underlying the metabolic syndrome. The development of these metabolic disorders is frequently studied, but mainly in liver, skeletal muscle, and adipose tissue. To gain more insight in the role of the small intestine in development of obesity and insulin resistance, dietary fat-induced differential gene expression was determined along the longitudinal axis of small intestines of C57BL/6J mice. METHODS: Male C57BL/6J mice were fed a low-fat or a high-fat diet that mimicked the fatty acid composition of a Western-style human diet. After 2, 4 and 8 weeks of diet intervention small intestines were isolated and divided in three equal parts. Differential gene expression was determined in mucosal scrapings using Mouse genome 430 2.0 arrays. RESULTS: The high-fat diet significantly increased body weight and decreased oral glucose tolerance, indicating insulin resistance. Microarray analysis showed that dietary fat had the most pronounced effect on differential gene expression in the middle part of the small intestine. By overrepresentation analysis we found that the most modulated biological processes on a high-fat diet were related to lipid metabolism, cell cycle and inflammation. Our results further indicated that the nuclear receptors Ppars, Lxrs and Fxr play an important regulatory role in the response of the small intestine to the high-fat diet. Next to these more local dietary fat effects, a secretome analysis revealed differential gene expression of secreted proteins, such as Il18, Fgf15, Mif, Igfbp3 and Angptl4. Finally, we linked the fat-induced molecular changes in the small intestine to development of obesity and insulin resistance. CONCLUSION: During dietary fat-induced development of obesity and insulin resistance, we found substantial changes in gene expression in the small intestine, indicating modulations of biological processes, especially related to lipid metabolism. Moreover, we found differential expression of potential signaling molecules that can provoke systemic effects in peripheral organs by influencing their metabolic homeostasis. Many of these fat-modulated genes could be linked to obesity and/or insulin resistance. Together, our data provided various leads for a causal role of the small intestine in the etiology of obesity and/or insulin resistance.