Transcriptional Architecture and Chromatin Landscape of the Core Circadian Clock in Mammals [RNA-seq]
Ontology highlight
ABSTRACT: The mammalian circadian clock involves a transcriptional feedback loop in which CLOCK and BMAL1 activate the Period and Cryptochrome genes, which then feedback and repress their own transcription. We have interrogated the transcriptional architecture of the circadian transcriptional regulatory loop on a genome scale in mouse liver and find a stereotyped, time-dependent pattern of transcription factor binding, RNA polymerase II (RNAPII) recruitment, RNA expression and chromatin states. We find that the circadian transcriptional cycle of the clock consists of three distinct phases — a poised state, a coordinated de novo transcriptional activation state, and a repressed state. Interestingly only 22% of mRNA cycling genes are driven by de novo transcription, suggesting that both transcriptional and post-transcriptional mechanisms underlie the mammalian circadian clock. We also find that circadian modulation of RNAPII recruitment and chromatin remodeling occurs on a genome-wide scale far greater than that seen previously by gene expression profiling.
ORGANISM(S): Mus musculus
PROVIDER: GSE39978 | GEO | 2012/08/31
SECONDARY ACCESSION(S): PRJNA172198
REPOSITORIES: GEO
ACCESS DATA