Project description:This SuperSeries is composed of the following subset Series: GSE39967: Transcriptional profiles of unfractionated lymph nodes cells obtained from completely protected, non protected and unvaccinated control rhesus macaques seven days prior to, and four and fourteen days after wt SIVmac239 challenge by microarray analysis. GSE39968: Transcriptional profiles of sorted CD8+ and CD4+ memory T cells from CP and NP and unvaccinated control RM 7 days prior to, and 4 and 14 days after wt SIVmac239 challenge by microarray analysis. Refer to individual Series
Project description:Live attenuated simian immunodeficiency virus (SIV) vaccines (LAVs) remain the most efficacious of all vaccines in nonhuman primate models of HIV and AIDS, yet the basis of their robust protection remains poorly understood. Here we show that the degree of LAV-mediated protection against intravenous wild-type SIVmac239 challenge strongly correlates with the magnitude and function of SIV-specific, effector-differentiated T cells in the lymph node but not with the responses of such T cells in the blood or with other cellular, humoral and innate immune parameters. We found that maintenance of protective T cell responses is associated with persistent LAV replication in the lymph node, which occurs almost exclusively in follicular helper T cells. Thus, effective LAVs maintain lymphoid tissue-based, effector-differentiated, SIV-specific T cells that intercept and suppress early wild-type SIV amplification and, if present in sufficient frequencies, can completely control and perhaps clear infection, an observation that provides a rationale for the development of safe, persistent vectors that can elicit and maintain such responses.
Project description:Enteric fever is a major public health problem and causes numerous deaths annually. Ty21a is the only efficacious oral, live attenuated typhoid vaccine currently licensed for use, however, its mechanism of protection is poorly understood. To address this knowledge gap, we interrogated transcriptional profiles following vaccination with Ty21a and an immunogenic experimental oral live attenuated vaccine, M01ZH09, and related these findings to immunogenicity, and incubation period and disease severity following challenge with Salmonella Typhi four weeks after vaccination. Despite originating from the same parent strain (Ty2), we detected marked differences in the gene expression between both vaccines. Analysis of the transcriptome 7 days after M01ZH09 vaccination implicated transcriptional patterns associated with the cell cycle correlated significantly with humoral immunogenicity 28 days after vaccination. In contrast, significantly induced T and NK cell responses were associated with Ty21a vaccination, and integrative analysis indicated signatures reflecting amino acid metabolism with delayed onset of disease. Stimulation of PBMCs collected from participants prior to and following vaccination with the two vaccine strains in vitro confirmed the superior capacity of Ty21a to induce NK cells, validating gene expression results. These data provide insight into the effects of oral live attenuated typhoid vaccines on the human molecular immune response and underline the involvement of T cell response signatures with protection following challenge.
Project description:Previous studies have established that strain 68-1-derived rhesus cytomegalovirus (RhCMV) vectors expressing simian immunodeficiency virus (SIV) proteins (RhCMV/SIV) are able to elicit and maintain cellular immune responses that provide protection against mucosal challenge of highly pathogenic SIV in rhesus monkeys (RMs). However, these efficacious RhCMV/SIV vectors were replication and spread competent and therefore have the potential to cause disease in immunocompromised subjects. To develop a safer CMV-based vaccine for clinical use, we attenuated 68-1 RhCMV/SIV vectors by deletion of the Rh110 gene encoding the pp71 tegument protein (ΔRh110), allowing for suppression of lytic gene expression. ΔRh110 RhCMV/SIV vectors are highly spread deficient in vivo (~1000-fold compared to the parent vector) yet are still able to superinfect RhCMV+ RMs and generate high-frequency effector-memory-biased T cell responses. Here, we demonstrate that ΔRh110 68-1 RhCMV/SIV-expressing homologous or heterologous SIV antigens are highly efficacious against intravaginal (IVag) SIVmac239 challenge, providing control and progressive clearance of SIV infection in 59% of vaccinated RMs. Moreover, among 12 ΔRh110 RhCMV/SIV-vaccinated RMs that controlled and progressively cleared an initial SIV challenge, 9 were able to stringently control a second SIV challenge ~3 years after last vaccination, demonstrating the durability of this vaccine. Thus, ΔRh110 RhCMV/SIV vectors have a safety and efficacy profile that warrants adaptation and clinical evaluation of corresponding HCMV vectors as a prophylactic HIV/AIDS vaccine.
Project description:The utility of live attenuated vaccines for controlling HIV epidemics is being debated. Live attenuated HIV vaccines (LAHVs) could be extremely effective in protecting against infection with wild-type strains, but may not be completely safe as the attenuated strain could cause AIDS in some vaccinated individuals. We present a theoretical framework for evaluating the consequences of the tradeoff between vaccine efficacy (in terms of preventing new infections with wild-type strains) and safety (in terms of vaccine-induced AIDS deaths). We use our framework to predict, for Zimbabwe and Thailand, the epidemiological impact of 1,000 different (specified by efficacy and safety characteristics) LAHVs. We predict that paradoxically: (i) in Zimbabwe (where transmission is high) LAHVs would significantly decrease the AIDS death rate, but (ii) in Thailand (where transmission is low) exactly the same vaccines (in terms of efficacy and safety characteristics) would increase the AIDS death rate. Our results imply that a threshold transmission rate exists that determines whether any given LAHV has a beneficial or a detrimental impact. We also determine the vaccine perversity point, which is defined in terms of the fraction of vaccinated individuals who progress to AIDS as a result of the vaccine strain. Vaccination with any LAHV that causes more than 5% of vaccinated individuals to progress to AIDS in 25 years would, even 50 years later, lead to perversity (i.e., increase the annual AIDS death rate) in Thailand; these same vaccines would lead to decreases in the annual AIDS death rate in Zimbabwe.
Project description:Two herpes zoster (HZ) vaccines licensed in the United States are recommended by the Advisory Committee on Immunization Practices (ACIP): (i) live-attenuated vaccine (ZVL) using vOka strain varicella-zoster virus (VZV) and (ii) recombinant adjuvanted vaccine (RZV) containing recombinant varicella-zoster virus (VZV) glycoprotein E (gE). Two phase 3 clinical trials of RZV led the Advisory Committee on Immunization Practices (ACIP) to recommend it with preferred status. VZV T cell-mediated immunity (CMI), but not humoral immunity, is considered essential for protection against HZ. Published studies of humoral immunity focused on VZV-specific IgG concentration. To complement reports comparing the CMI responses to these vaccines, we compared humoral responses in ZVL and RZV recipients, emphasizing functional qualities (avidity and neutralization). Baseline avidities to a VZV glycoprotein mixture (gp) were near the upper limit of detection, but avidity to gE was much lower. Small increases in gp avidity were observed for both RZV and ZVL vaccination (19 and 12 avidity index units [AIU], respectively). RZV boosted both gE avidity and VZV neutralizing antibody significantly more than ZVL (mean gE avidity boost, 47 AIU versus 22 AIU; mean neutralizing antibody boost, 22-fold versus 8-fold). Increases in neutralizing antibodies strongly correlated with gE avidity increases (r = 0.5) and moderately with gp avidity increases (r = 0.23). After 1 year, 81% of RZV recipients and only 18% of ZVL recipients retained >50% of their peak avidity boosts. These results are consistent with the CMI responses to these vaccines: RZV responses are skewed to long-term memory, whereas ZVL preferentially induces transient effector responses.IMPORTANCE These observations further distinguish the immunogenicity and duration of the immune response of the two vaccines. In addition, measurements of functional humoral immunity (IgG avidity and neutralizing antibody) in response to zoster immunization, alone or combined with other immune markers, might contribute to practical in vitro correlates of protection. Combined with previous observations of the cell-mediated response to these vaccines, this study suggests that vaccine development will benefit from more expansive and granular assessments of acquired immunity during early phase 1 immunogenicity trials.
Project description:Live-attenuated respiratory syncytial virus (RSV) vaccines offer several advantages for immunization of infants and young children: (1) they do not cause vaccine-associated enhanced RSV disease; (2) they broadly stimulate innate, humoral, and cellular immunity, both systemically and locally in the respiratory tract; (3) they are delivered intranasally; and (4) they replicate in the upper respiratory tract of young infants despite the presence of passively acquired maternally derived RSV neutralizing antibody. This chapter describes early efforts to develop vaccines through the classic methods of serial cold-passage and chemical mutagenesis, and recent efforts using reverse genetics to derive attenuated derivatives of wild-type (WT) RSV and to develop parainfluenza vaccine vectors that express RSV surface glycoproteins.
Project description:Outbreaks of novel highly pathogenic avian influenza viruses have been reported in poultry species in the United States since 2014. These outbreaks have proven the limitations of biosecurity control programs, and new tools are needed to reinforce the current avian influenza control arsenal. Some enzootic countries have implemented inactivated influenza vaccine (IIV) in their control programs, but there are serious concerns that a long-term use of IIV without eradication may result in the selection of novel antigenically divergent strains. A broadly protective vaccine is needed, such as live-attenuated influenza vaccine (LAIV). We showed in our previous studies that pc4-LAIV (a variant that encodes a C-terminally truncated NS1 protein) can provide significant protection against heterologous challenge virus in chickens vaccinated at 2-4 weeks of age through upregulation of innate and adaptive immune responses. The current study was conducted to compare the performances of pc4-LAIV and IIV in young chickens vaccinated at 1 day of age. A single dose of pc4-LAIV was able to induce stronger innate and mucosal IgA responses and protect young immunologically immature chickens better than a single dose of IIV. Most importantly, when 1-day-old chickens were intranasally primed with pc4-LAIV and subcutaneously boosted with IIV three weeks later, they showed a rapid, robust, and highly cross-reactive serum antibody response and a high level of mucosal IgA antibody response. This vaccination regimen warrants further optimization to increase its range of protection.
Project description:BackgroundThe immunological bases for the efficacies of the 2 currently licensed influenza vaccines, live attenuated influenza vaccine (LAIV) and inactivated influenza vaccine (IIV), are not fully understood. The goal of this study was to identify specific B-cell responses correlated with the known efficacies of these 2 vaccines.MethodsWe compared the B-cell and antibody responses after immunization with 2010/2011 IIV or LAIV in young adults, focusing on peripheral plasmablasts 6-8 days after vaccination.ResultsThe quantities of vaccine-specific plasmablasts and plasmablast-derived polyclonal antibodies (PPAbs) in IIV recipients were significantly higher than those in LAIV recipients. No significant difference was detected in the avidity of vaccine-specific PPAbs between the 2 vaccine groups. Proportionally, LAIV induced a greater vaccine-specific immunoglobulin A plasmablast response, as well as a greater plasmablast response to the conserved influenza nuclear protein, than IIV. The cross-reactive plasmablast response to heterovariant strains, as indicated by the relative levels of cross-reactive plasmablasts and the cross-reactive PPAb binding reactivity, was also greater in the LAIV group.ConclusionsDistinct quantitative and qualitative patterns of plasmablast responses were induced by LAIV and IIV in young adults; a proportionally greater cross-reactive response was induced by LAIV.