Project description:Deep sequencing of mRNA from Fusarium oxysporum f. sp. Cubense 1 and 4 after infecting Musa acuminata 0h and 48h. Analysis of ploy(A)+ RNA of different hours after infecting of Musa acuminata
Project description:We report the first data of RNA sequencing of banana Musa acuminata cv. Pisang ambon kuning (AAA group) inoculated by two different endophyte bacteria named Stenothropomonas nitritireducens (BR-49) and Kocuria rhizophila (SL-08), respectively, prior to Fusarium oxysprorum f.sp. cubense tropical race 4 (Foc TR4).
Project description:Fungal effectors play important roles in inciting disease development on host plants. We identified an effector (Secreted in Xylem4, SIX4) in an Arabidopsis infecting isolate (Fo5176) of the root-infecting fungal pathogen Fusarium oxysporum and demonstrated this effector is required for full virulence. To explore the role of Fo5176_SIX4 we use whole transcriptome profiling of root tissues from plants overexpressing this effector (35sSIX4) versus wild-type (Col-0) plants after F. oxysporum infection. Published in DOI:10.1007/978-3-319-42319-7_4. Belowground Defence Strategies in Plants.
Project description:Fungal effectors play important roles in inciting disease development on host plants. We identified an effector (Secreted in Xylem4, SIX4) in an Arabidopsis infecting isolate (Fo5176) of the root-infecting fungal pathogen Fusarium oxysporum and demonstrated this effector is required for full virulence. To explore the role of Fo5176_SIX4 we use whole transcriptome profiling of root tissues from plants overexpressing this effector (35sSIX4) versus wild-type (Col-0) plants after F. oxysporum infection. We grew both WT and 35sSIX4 plants for four weeks in soil. After four weeks the plants were infected with Fusarium oxyporum isolate Fo5176, trays covered with a plastic dome and incubated at 28C. There were four independent replicates of each treatment and each replicate contained root tissue from 20 plants. Each replicate (8 in total) was harvested 4 days post inoculation and the resulting RNA was used for hybridization to an Affymetrix ATH1 chip.
Project description:We performed RNA-seq analysis of the root transcriptional response to Fusarium oxysporum f.sp. vasinfectum (FOV) race 4 (FOV4) infection in Gossypium barbadense, also known as Pima cotton. Susceptible Gossypium barbadense inbred lines Pima S-7 (PI 560140) and Pima 3-79 susceptible to Fusarium wilt [Fusarium oxysporum f.sp. vasinfectum (FOV)] race 4 (FOV4), and Pima S-6 (PI 608346) which is resistant to FOV4 infection, were used for the preparation of cDNA libraries and further RNA-seq analyses. An isolate of FOV4 (FOV CA-14) from a naturally infested field in Fresno County in the San Joaquin Valley, California was used in this study.
Project description:Background: Banana (Musa) is one of the most important crops grown in tropical and sub-tropical areas. Cavendish, the most widely grown banana cultivar, is a triploid derived from an intra-species cross. Cavendish is relatively resistant to Race 1 of Fusarium oxysporum f. sp. Cubense (Foc1) which caused wide spread Panama disease during 1960s but is susceptible to Race 4 of Foc (Foc4) which has been causing epidemics in large areas of banana fields in Asia and Australia in the last decade and is threatening world banana production. The genome of the diploid species Musa acuminata (AA) which is the ancestor of a majority of cultivated banana has recently been sequenced. Availability of banana transcriptomes will be highly useful for improving banana genome annotation and assembly and for banana biological research. The knowledge of global gene expression patterns influenced by infection by different Foc races will help to understand the pathogenesis processes and the host responses to the infection. Results: RNA samples extracted from different organs of the Cavendish cultivar were pooled for deep sequencing using the Illumina sequencing technology. The assembled reads were aligned with the genome of M. accuminata and with sequences in the Genbank databases. The analysis led to identification of 842 genes that were not annotated by the Musa genome project. A large number of simple nucleotide polymorphisms (SNPs) and short insertions and deletion (indels) were identified from the transcriptome data. GFP-expressing Foc1 and Foc4 was generated and used to monitor the infection process. Digital gene expression (DGE) profiling analysis was carried out to obtain transcriptome profiles influenced by infection with Foc1 and Foc4 in banana roots at 3, 27, and 51 hours post-inoculation. Both Foc1 and Foc4 were found to be able to invade banana roots and spread to root vascular tissues in the first two days following inoculation. The profiling analysis revealed that inoculation with Foc1 and Foc4 caused similar changes in the gene expression profiles in the infected banana roots. The Foc infection led to induction of many well-known defense-related genes including PATHOGENESIS-RELATED 5 (PR5), PAL, and a lignin-forming peroxidase. The WRKY40 gene, which is a negative regulator of the defense pathway in Arabidopsis, was quickly and strongly suppressed by the infection. Two genes encoding the ethylene biosynthetic enzyme ACC oxidase and several ethylene-responsive transcription factors were among strongly induced genes by both Foc1 and Foc4 Conclusions: Both Foc1 and Foc4 are able to spread into the vascular system of banana roots during the first two days of the infection process and their infection led to similar gene expression profiles in banana roots. The transcriptome profiling analysis indicates that the ethylene synthetic and signalling pathways were activated in response to the Foc infection. Digital gene expression (DGE) profiling analysis was carried out to obtain transcriptome profiles influenced by infection with Foc1 and Foc4 in banana roots at 3, 27, and 51 hours post-inoculation. The plants whose roots were immersed in the culture medium without the pathogen (mock inoculation) were used as a control.
Project description:Fusarium oxysporum causes Fusarium wilt syndrome in more than 120 different plant hosts, including globally important crops such as tomato, cotton, banana, melon, etc. F. oxysporum shows high host specificity in over 150 formae speciales and have been ranked in the top 10 plant fungal pathogens. Although three PMTs encoded by the pmt1, pmt2, and pmt4 are annotated in the genome of F. oxysporum, their functions have not been reported. As O-mannosylation is not found in plants, a comprehensive understanding of PMTs in F. oxysporum becomes attractive for the development of new strategy against Fusarium wilt. In order to understand the molecular mechanism of the differential functions of three PMTs, a comparative O-glycoproteome analysis of the pmt mutants were carried out.
Project description:Background: Banana (Musa) is one of the most important crops grown in tropical and sub-tropical areas. Cavendish, the most widely grown banana cultivar, is a triploid derived from an intra-species cross. Cavendish is relatively resistant to Race 1 of Fusarium oxysporum f. sp. Cubense (Foc1) which caused wide spread Panama disease during 1960s but is susceptible to Race 4 of Foc (Foc4) which has been causing epidemics in large areas of banana fields in Asia and Australia in the last decade and is threatening world banana production. The genome of the diploid species Musa acuminata (AA) which is the ancestor of a majority of cultivated banana has recently been sequenced. Availability of banana transcriptomes will be highly useful for improving banana genome annotation and assembly and for banana biological research. The knowledge of global gene expression patterns influenced by infection by different Foc races will help to understand the pathogenesis processes and the host responses to the infection. Results: RNA samples extracted from different organs of the Cavendish cultivar were pooled for deep sequencing using the Illumina sequencing technology. The assembled reads were aligned with the genome of M. accuminata and with sequences in the Genbank databases. The analysis led to identification of 842 genes that were not annotated by the Musa genome project. A large number of simple nucleotide polymorphisms (SNPs) and short insertions and deletion (indels) were identified from the transcriptome data. GFP-expressing Foc1 and Foc4 was generated and used to monitor the infection process. Digital gene expression (DGE) profiling analysis was carried out to obtain transcriptome profiles influenced by infection with Foc1 and Foc4 in banana roots at 3, 27, and 51 hours post-inoculation. Both Foc1 and Foc4 were found to be able to invade banana roots and spread to root vascular tissues in the first two days following inoculation. The profiling analysis revealed that inoculation with Foc1 and Foc4 caused similar changes in the gene expression profiles in the infected banana roots. The Foc infection led to induction of many well-known defense-related genes including PATHOGENESIS-RELATED 5 (PR5), PAL, and a lignin-forming peroxidase. The WRKY40 gene, which is a negative regulator of the defense pathway in Arabidopsis, was quickly and strongly suppressed by the infection. Two genes encoding the ethylene biosynthetic enzyme ACC oxidase and several ethylene-responsive transcription factors were among strongly induced genes by both Foc1 and Foc4 Conclusions: Both Foc1 and Foc4 are able to spread into the vascular system of banana roots during the first two days of the infection process and their infection led to similar gene expression profiles in banana roots. The transcriptome profiling analysis indicates that the ethylene synthetic and signalling pathways were activated in response to the Foc infection.
Project description:We report the first data of RNA sequencing from two different banana cultivars from Musa acuminata cv. Mas Kirana (AA group) genome and Musa balbisiana cv. Klutuk (BB group) genome in response to blood disease infection caused by Ralstonia syzygii subsp. celebesensis (Rsc)
Project description:The Mediator complex is an evolutionary conserved multiprotein complex that plays an essential role in initiating and regulating transcription. Its function is to act as a universal adaptor between RNA Polymerase II and DNA-bound transcription factors to translate regulatory information from activators and repressors to the transcriptional machinery. We have found that the PFT1 gene (which encodes the MED25 subunit of the Mediator complex) is required for the uncompromised expression of both salicylic acid- and jasmonate-dependent defense genes as well as resistance to the leaf-infecting fungal pathogens, Alternaria brassicicola and Botrytis cinerea in Arabidopsis. Surprisingly, we found that the pft1/med25 mutant showed increased resistance to the root infecting pathogen Fusarium oxysporum and that this resistance was independent of classical defense genes. In addition, the over-expression of PFT1 led to increased susceptibility to F. oxysporum. Therefore, to explore this phenomenon further, we wished to use whole genome transcript profiling to identify which genes may be playing a role in pft1/med25-mediated resistance to F. oxysporum.