ABSTRACT: Thermoacidophilic archaea are found in heavy metal-rich environments and, in some cases, these microorganisms are causative agents of metal mobilization through cellular processes related to their bioenergetics. Given the nature of their habitats, these microorganisms must deal with the potentially toxic effect of heavy metals. Here, we show that two thermoacidophilic Metallosphaera species with nearly identical (99.99%) genomes differed significantly in their sensitivity and reactivity to uranium. M. prunae, isolated from a smoldering heap on a uranium mine in Thuringen, Germany, could be viewed as a “spontaneous mutant” of M. sedula, an isolate from Pisciarelli solfatara near Naples, Italy. M. prunae tolerated U3O8 and U(VI) to a much greater extent than M. sedula. Within 15 minutes following exposure to “U(VI) shock”, M. sedula, and not M. prunae, exhibited transcriptomic features associated with severe stress response. Furthermore, within 15 minutes post-U(VI) shock, M. prunae, and not M. sedula, showed evidence of substantial degradation of cellular RNA. This suggested that transcriptional and translational processes were aborted as a dynamic mechanism for resisting U toxicity; by 60 minutes post-U(VI) shock, RNA integrity in M. prunae recovered, and known modes for heavy metal resistance were activated. In addition, M. sedula rapidly oxidized solid U3O8 to soluble U(VI) for bioenergetic purposes, a chemolithoautotrophic feature not previously reported. M. prunae, however, did not solubilize solid U3O8 to any significant extent, thereby not exacerbating U(VI) toxicity. These results point to uranium extremophily as an adaptive, rather than intrinsic, feature for Metallosphaera species, driven by environmental factors.