Mutant PI3K cooperates with HER2 to promote mammary tumor formation and induces trastuzumab resistance in vivo
Ontology highlight
ABSTRACT: HER2 (ERBB2) gene amplification and PIK3CA mutations often co-occur in breast cancer, and aberrant activation of the PI3K pathway has been implicated in resistance to HER2-directed therapies. We have created a mouse model of HER2-overexpressing (HER2+), PIK3CAH1047R-mutant breast cancer. Mice expressing both human HER2 and mutant PIK3CA in their mammary glands developed tumors with a significantly shorter latency compared to mice expressing either oncogene alone. By microarray analysis, HER2-driven tumors clustered with the luminal subtype, whereas HER2+PIK3CA and PIK3CA-driven tumors were associated with the claudin-low breast cancer subtype. In accordance, PIK3CA and HER2+PIK3CA tumors expressed elevated levels of EMT and stem cell markers, and cells from HER2+PIK3CA tumors more efficiently formed mammospheres, providing further evidence that activated PIK3CA may enrich for cancer stem cells. Finally, HER2+PIK3CA tumors are resistant to the HER2 antibody trastuzumab; resistance is partially reversed by the addition of a PI3K inhibitor. Taken together, these studies suggest that the co-expression of HER2 and PI3KH1047R in the mouse mammary gland accelerates the formation of aggressive, trastuzumab-resistant tumors.
ORGANISM(S): Mus musculus
PROVIDER: GSE41118 | GEO | 2013/09/03
SECONDARY ACCESSION(S): PRJNA176138
REPOSITORIES: GEO
ACCESS DATA