Genomics

Dataset Information

0

Identification of a set of miRNAs differentially expressed in transiently TIA-depleted HeLa cells by genome-wide profiling


ABSTRACT: Background: T-cell intracellular antigen (TIA) proteins function as regulators of cell homeostasis. These proteins control gene expression globally at multiple levels in response to dynamic regulatory changes and environmental stresses. Herein we identified a micro(mi)RNA signature associated to transiently TIA-depleted HeLa cells and analyzed the potential role of miRNAs combining genome-wide analysis data on mRNA and miRNA profiles. Results: Using high-throughput miRNA expression profiling, transient depletion of TIA-proteins in HeLa cells was observed to promote significant and reproducible changes (>2-fold, FDR<0.0001) affecting to a pool of up-regulated miRNAs (miR-30b*, miR125a-3p, miR-193a-5p, miR-197_MM2, miR-203, miR-210, miR-371-5p, miR-373*, miR-483-5p, miR-492, miR-498, miR-503, miR-572, miR-586, miR-612, miR-615, miR-623, miR-625, miR-629, miR-638, miR-658, miR-663, miR-671, miR-769-3p and miR-744). Differential expression analysis of some miRNAs was validated by reverse transcription and real time PCR. By target prediction and combined analysis of the genome-wide expression profiles of the mRNAs and miRNAs identified in TIA-depleted HeLa cells, we detected concomitant connections between up-regulated miRNAs and putative and experimental targeted mRNAs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes database analyses suggest that targeted mRNAs are related with biological processes associated to the regulation of DNA-dependent transcription, signal transduction and multicellular organismal development as well as with the enrichment of pathways in cancer, focal adhesion, regulation of actin cytoskeleton and MAPK and Wnt signalling pathways, respectively. Conclusion: All this considered, these observations suggest that specific miRNAs could act as potential mediators of the epigenetic switch linking transcriptomic dynamics and cell phenotypes mediated by TIA proteins.

ORGANISM(S): Mus musculus Human gammaherpesvirus 8 Rattus norvegicus JC polyomavirus Betapolyomavirus macacae Human immunodeficiency virus 1 Murid gammaherpesvirus 4 Homo sapiens Human betaherpesvirus 5 Human alphaherpesvirus 1 Betapolyomavirus hominis human gammaherpesvirus 4 Murid betaherpesvirus 1

PROVIDER: GSE41213 | GEO | 2013/02/06

SECONDARY ACCESSION(S): PRJNA176188

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2013-02-06 | E-GEOD-41213 | biostudies-arrayexpress
| EGAS00001005296 | EGA
2015-05-19 | GSE54540 | GEO
2023-05-10 | PXD036109 | Pride
| EGAD00001006842 | EGA
| EGAD00001006844 | EGA
2018-02-22 | GSE110993 | GEO
2015-05-19 | E-GEOD-54540 | biostudies-arrayexpress
2014-02-13 | E-GEOD-47841 | biostudies-arrayexpress
2024-06-13 | PXD037862 | Pride