Project description:Transcription profiling of sense and antisense transcripts of 10 tissues each from human, mouse, and rat. This SuperSeries is composed of the SubSeries listed below.
Project description:Transcription profiling of antisense transcripts of 10 tissues each from human, mouse, and rat. We profiled the antisense transcription level of 10 tissues each from human, mouse, and rat. Only Affymetrix core probesets were used. Two technical replicates per sample. Reference for protocol: Ge, X., Rubinstein, W.S., Jung, Y.C., and Wu, Q. (2008). Genome-wide analysis of antisense transcription with Affymetrix exon array. BMC Genomics 9, 27.
Project description:Transcription profiling of sense and antisense transcripts of 10 tissues each from human, mouse, and rat. This SuperSeries is composed of the following subset Series: GSE41462: Antisense exon profiling across human, mouse, and rat GSE41464: Sense exon profiling across human, mouse, and rat We profiled the sense and antisense transcription level of 10 tissues each from human, mouse, and rat. Only Affymetrix core probesets were used. Two technical replicates per sample. Reference for protocol: Ge, X., Rubinstein, W.S., Jung, Y.C., and Wu, Q. (2008). Genome-wide analysis of antisense transcription with Affymetrix exon array. BMC Genomics 9, 27.
Project description:Transcription profiling of sense transcripts of 10 tissues each from human, mouse, and rat. We profiled the sense transcription level of 10 tissues each from human, mouse, and rat. Only Affymetrix core probesets were used. Two technical replicates per sample.
Project description:<p>High throughput RNA Sequencing has revealed that the human genome is widely transcribed. However, the extent of natural antisense transcription, the molecular mechanisms by which natural antisense transcripts (NATs) might affect their cognate sense genes, and the role of NATs in cancer are less well understood. Here, we use strand-specific paired-end RNA sequencing (ssRNASeq) on a cohort of 376 cancer patients covering 9 tissue types to comprehensively characterize the landscape of antisense expression. Our results reveal that greater than 60% of annotated transcripts have measureable antisense expression and the expression of sense and antisense transcript pairs is in general positively correlated. Furthermore, by studying the expression of sense/antisense pairs across tissues we identify lineage-specific, ubiquitous and cancer-specific antisense loci. Our results raise the possibility that NATs participate in the regulation of well-known tumor suppressors and oncogenes. Finally, this study provides a catalogue of cancer related genes with significant antisense transcription (oncoNAT). This resource will allow researchers to investigate the molecular mechanisms of sense/antisense regulation and further advance our understanding of their role in cancer.</p>
Project description:We characterized the expression patterns of sense-antisense transcripts, based on available cDNA sequences, in colon (colorectal) cancer tissues and in normal tissues surrounding the cancer tissues. Although expression balances (ratios) of most of sense and antisense transcript pairs did not change between patients or between normal and cancer tissues, we found 68 sense-antisense transcripts whose expression balances were altered specifically in colon cancer tissues.
Project description:We characterized the expression patterns of sense-antisense transcripts, based on available cDNA sequences, in colon (colorectal) cancer tissues and in normal tissues surrounding the cancer tissues. Although expression balances (ratios) of most of sense and antisense transcript pairs did not change between patients or between normal and cancer tissues, we found 68 sense-antisense transcripts whose expression balances were altered specifically in colon cancer tissues. We conducted DNA microarray analyses by using the same set of probes designed for 2621 sense-antisense pairs to detect transcripts expressed in colon cancer tissues. These probes comprise 2358 pairs for the detection of protein-coding transcripts only, 250 pairs for the detection of protein-coding transcripts paired with non-protein-coding transcripts, and 13 pairs for the detection of non-protein-coding transcripts only.
Project description:This SuperSeries is composed of the following subset Series: GSE14372: Novel endogenous antisense transcripts (data for the mouse normal tissues) GSE14557: Novel endogenous antisense transcripts (data for the mouse mammary tumors) Refer to individual Series Unpublished data has been masked in the supplementary feature extraction files.