Project description:Legionella pneumophila was exposed for 3h to 160 ug/ml of CuO nanoparticle. Untreated samples are used as the control condition. Two conditions: CuO (treated) and UN (untreated control. Three bioilogical repliucates. Genomic DNA is used as a reference channel. (Talaat, 2002, NAR).
Project description:There is still a lot of contradiction on whether metal ions are solely responsible for the observed the toxicity of ZnO and CuO nanoparticles to aquatic species. While most tests have studied nanoparticle effects at organismal levels (e.g. mortality, reproduction), effects at suborganismal levels may clarify the role of metal ions, nanoparticles and nanoparticle aggregates. In this study, the effect of ZnO, CuO nanoparticles and zinc, copper salts was tested on the gene expression levels in Daphnia magna. D. magna was exposed during 96 hours to 10% immobilization concentrations of all chemicals, after which daphnids were sampled for a differential gene expression analysis using microarray. When comparing the nanoparticle exposed daphnids (ZnO or CuO) to the metal salt exposed daphnids (zinc or copper salt), the microarray results showed no significantly differentially expressed genes. These results indicate that the toxicity of the tested ZnO and CuO nanoparticles to D. magna caused is solely caused by toxic metal ions. 4 replicate exposures of ZnO nanoparticles, ZnCl2, Blank (for Zn); 4 replicate exposures of CuO nanoparticles, CuCl2.2H2O, Blank (for Cu); Individual reference design with swapped dyes for zinc (e.g. ZnO-REFZn; REFZn-bl) and copper exposure (e.g. CuO-REFCu; REFCu-bl); Zinc reference sample is a mixture of equal aliquots of ZnO nanoparticle, ZnCl2 and blank; Copper reference sample is a mixture of equal aliquots of CuO nanoparticle, CuCl2.2H2O and blank
Project description:There is still a lot of contradiction on whether metal ions are solely responsible for the observed the toxicity of ZnO and CuO nanoparticles to aquatic species. While most tests have studied nanoparticle effects at organismal levels (e.g. mortality, reproduction), effects at suborganismal levels may clarify the role of metal ions, nanoparticles and nanoparticle aggregates. In this study, the effect of ZnO, CuO nanoparticles and zinc, copper salts was tested on the gene expression levels in Daphnia magna. D. magna was exposed during 96 hours to 10% immobilization concentrations of all chemicals, after which daphnids were sampled for a differential gene expression analysis using microarray. When comparing the nanoparticle exposed daphnids (ZnO or CuO) to the metal salt exposed daphnids (zinc or copper salt), the microarray results showed no significantly differentially expressed genes. These results indicate that the toxicity of the tested ZnO and CuO nanoparticles to D. magna caused is solely caused by toxic metal ions.
Project description:Legionella pneumophila cells were harvested during exponential growth (RP) and stationary growth (TP). VBNC cells were also anylzed. Protein subfractions were studied.
Project description:Legionella pneumophila Philadelphia-1 strain was grown to stationary phase in AYE broth and starved in freshwater for 2 hours and RNA was harvested with or without sublethal heat shock via immersion in a 55 degree C hot water bath for 5 minutes