Transcriptomics

Dataset Information

0

Network Analysis of Breast Cancer Progression and Reversal with a Tree-Evolving Network Algorithm


ABSTRACT: The HMT3522 progression series of breast cells has been used to discover the roles of tissue architecture, microenvironment and signaling molecules in nonmalignant and malignant breast cell growth and behaviors, including the potential of various factors to cause phenotypic reversion of malignant cells to nonmalignant states. Despite many efforts to delineate key signaling pathways governing the malignant as well as the phenotypic reversion behaviors of T4 cells, much remains to be elucidated about the regulatory mechanisms underlying these cell states at the systems level. Here, we analyzed gene expression microarray profiles obtained from this progression series in both phenotypically malignant and reverted states using our newly developed tree-lineage-based network detection algorithm, Treegl. Our work suggests analysis of various conditions of reversion (including non-reverted) of the HMT3522 cells using Treegl can be a model system to study drug effects on breast cancer cells, and may become a tool for effective drug discovery and target identification.

ORGANISM(S): Homo sapiens

PROVIDER: GSE42125 | GEO | 2014/07/24

SECONDARY ACCESSION(S): PRJNA179161

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2014-07-24 | E-GEOD-42125 | biostudies-arrayexpress
2013-10-01 | GSE50444 | GEO
2016-06-02 | E-GEOD-82132 | biostudies-arrayexpress
2019-12-05 | GSE126736 | GEO
2013-10-01 | E-GEOD-50444 | biostudies-arrayexpress
2014-08-11 | PXD000773 | Pride
2023-12-01 | GSE227380 | GEO
2008-06-15 | E-GEOD-8096 | biostudies-arrayexpress
2024-04-01 | GSE254917 | GEO
2022-03-04 | GSE146586 | GEO