Project description:Gene expression profiling of mouse cerebellum in which the experimental strain conditionally lack the Smarca5 gene that encodes for the catalytic subunit of multiple chromatin remodeling complexes. Deletion of Smarca5 was restricted to those cells expressing Cre-recombinase driven by the Nestin promoter.
Project description:Gene expression profiling of mouse cerebellum in which the experimental strain conditionally lack the Smarca5 gene that encodes for the catalytic subunit of multiple chromatin remodeling complexes. Deletion of Smarca5 was restricted to those cells expressing Cre-recombinase driven by the Nestin promoter.
Project description:Gene expression profiling of mouse cerebellum in which the experimental strain conditionally lack the Smarca5 gene that encodes for the catalytic subunit of multiple chromatin remodeling complexes. Deletion of Smarca5 was restricted to those cells expressing Cre-recombinase driven by the Nestin promoter. Comparison of gene expression in P0 cerebella of Smarca5 cKO mice versus wild type controls. Three samples of each strain were used in a total of 4 replicates.
Project description:Gene expression profiling of mouse cerebellum in which the experimental strain conditionally lack the Smarca5 gene that encodes for the catalytic subunit of multiple chromatin remodeling complexes. Deletion of Smarca5 was restricted to those cells expressing Cre-recombinase driven by the Nestin promoter. Comparison of gene expression in P10 cerebella of Smarca5 cKO mice versus wild type controls. Three samples of each strain were used in a total of 3 replicates.
Project description:We previously reported the different motor abilities of D1R knockout (KO), D2R KO and wild-type (WT) mice. To understand the interaction between the cerebellum and the striatal direct and indirect pathways, we examined the expression patterns of immediate early genes (IEG) in the cerebellum of these three genotypes of mice. In the WT naive mice, there was little IEG expression. However, we observed a robust expression of c-fos mRNA in the vermis and hemisphere after running rota-rod tasks. In the vermis, c-fos was expressed throughout the lobules except lobule 7, and also in crus 1 of the ansiform lobule (Crus1), copula of the pyramis (Cop) and most significantly in the flocculus in the hemisphere. jun-B was much less expressed but more preferentially expressed in Purkinje cells. In addition, we observed significant levels of c-fos and jun-B expressions after handling mice, and after the stationary rota-rod task in naive mice. Surprisingly, we observed significant expression of c-fos and jun-B even 30 min after single weighing. Nonetheless, certain additional c-fos and jun-B expressions were observed in three genotypes of the mice that experienced several sessions of motor tasks 24 h after stationary rota-rod task and on days 1 and 5 after rota-rod tasks, but no significant differences in expressions after the running rota-rod tasks were observed among the three genotypes. In addition, there may be some differences 24 h after the stationary rota-rod task between the naive mice and the mice that experienced several sessions of motor tasks.
Project description:Rett syndrome (RTT) is an X-linked neurodevelopmental disorder caused by mutations in the transcriptional regulator MeCP2. RTT is characterized by having apparently normal development until 6-18 months, when a progressive decline in motor and language functions begins and breathing abnormalities and seizures present. Here we present the first proteomic analysis in a RTT mouse model. Examining whole cortex tissue in symptomatic males (Mecp2Jae/y) and wild-type littermates, we have identified 465 proteins significantly altered. Pathway analysis identified biological pathways ubiquitous to multiple cell types as well as cell type specific pathways, underscoring the contributions of multiple central nervous system (CNS) cell populations to the disease pathogenesis.
Project description:We compared maximal cold-induced heat production (HPmax) and cold limits between warm (WA; 27°C), moderate cold (MCA; 18°C), or cold acclimated (CA; 5°C) wild-type and uncoupling-protein 1 knockout (UCP1-KO) mice. In wild-type mice, HPmax was successively increased after MCA and CA, and the cold limit was lowered to -8.3°C and -18.0°C, respectively. UCP1-KO mice also increased HPmax in response to MCA and CA, although to a lesser extent. Direct comparison revealed a maximal cold-induced recruitment of heat production by +473 mW and +227 mW in wild-type and UCP1-KO mice, respectively. The increase in cold tolerance of UCP1-KO mice from -0.9°C in MCA to -10.1°C in CA could not be directly related to changes in HPmax, indicating that UCP1-KO mice used the dissipated heat more efficiently than wild-type mice. As judged from respiratory quotients, acutely cold-challenged UCP1-KO mice showed a delayed transition toward lipid oxidation, and 5-h cold exposure revealed diminished physical activity and less variability in the control of metabolic rate. We conclude that BAT is required for maximal adaptive thermogenesis but also allows metabolic flexibility and a rapid switch toward sustained lipid-fuelled thermogenesis as an acute response to cold. In both CA groups, expression of contractile proteins (myosin heavy-chain isoforms) showed minor training effects in skeletal muscles, while cardiac muscle of UCP1-KO mice had novel expression of beta cardiac isoform. Neither respiration nor basal proton conductance of skeletal muscle mitochondria were different between genotypes. In subcutaneous white adipose tissue of UCP1-KO mice, cold exposure increased cytochrome-c oxidase activity and expression of the cell death-inducing DFFA-like effector A by 3.6-fold and 15-fold, respectively, indicating the recruitment of mitochondria-rich brown adipocyte-like cells. Absence of functional BAT leads to remodeling of white adipose tissue, which may significantly contribute to adaptive thermogenesis during cold acclimation.
Project description:Dopamine (DA) exerts well-known functions in the brain as a neurotransmitter. In addition, it plays important physiological roles in peripheral organs, but it is largely unknown how and where peripheral DA is synthesized and regulated. Catecholamines in peripheral tissues are either produced within the tissue itself and/or derived from sympathetic neurons, which release neurotransmitters for uptake by peripheral tissues. To evaluate DA-producing ability of each peripheral tissue, we generated conditional KO mice (cKO mice) in which the tyrosine hydroxylase (TH) gene is ablated in the sympathoadrenal system, thus eliminating sympathetic neurons as a DA source. We then examined the alterations in the noradrenaline (NA), DA, and 3,4-dihydroxyphenylalanine (DOPA) contents in peripheral organs and performed immunohistochemical analyses of TH-expressing cells. In the heart and pancreas of cKO mice, both the TH protein and NA levels were significantly decreased, and the DA contents were decreased in parallel with NA contents, indicating that the DA supply originated from sympathetic neurons. We found TH-immunoreactive cells in the stomach and lung, where the TH protein showed a decreasing trend, but the DA levels were not decreased in cKO mice. Moreover, we found a significant correlation between the DA content in the kidney and the plasma DOPA concentration, suggesting that the kidney takes up DOPA from blood to make DA. The aforementioned data unravel differences in the DA biosynthetic pathway among tissues and support the role of sympathetic neurons as a DA supplier.
Project description:Gene expression profiling of mouse cortices in which the experimental strain lacks Exon 6 of the Snf2l gene which encodes an ATP-binding motif that is critical for chromatin re-modeling