The coregulator, repressor of Estrogen Receptor Activity (REA), is a crucial regulator of the timing and magnitude of uterine decidualization.
Ontology highlight
ABSTRACT: Our findings establish a key role for the coregulator, Repressor of Estrogen receptor Activity (REA), in controlling the timing and magnitude of decidualization in human endometrial stromal cells in vitro and in the mouse uterus in vivo, and suggest that REA functions to synchronize uterine differentiation with concurrent embryo development, which is essential for optimal implantation and fertility. The findings highlight that REA physiologically restrains endometrial stromal cell decidualization, controlling the timing and magnitude of decidualization to enable proper synchronization of uterine differentiation with concurrent embryo development that is essential for implantation and optimal fertility.
Project description:Our findings establish a key role for the coregulator, Repressor of Estrogen receptor Activity (REA), in controlling the timing and magnitude of decidualization in human endometrial stromal cells in vitro and in the mouse uterus in vivo, and suggest that REA functions to synchronize uterine differentiation with concurrent embryo development, which is essential for optimal implantation and fertility. The findings highlight that REA physiologically restrains endometrial stromal cell decidualization, controlling the timing and magnitude of decidualization to enable proper synchronization of uterine differentiation with concurrent embryo development that is essential for implantation and optimal fertility. Human endometrial stromal cells (hESCs) were isolated from biopsies taken from the early proliferative stage endometrium of regularly cycling women on no hormonal medications. Cells were cultured in DMEM/F-12 mediumcontaining 5% charcoal stripped fetal bovine serum. To induce in vitro decidualization, hESCs were treated with a hormone cocktail containing 10 nM estradiol (E2), 1 μM progesterone (P4) and 0.5 uM 8-bromo-cAMP for up to 10 days, and media were changed every 48 h. For siRNA experiments, hESCs were transfected with REA siRNA or GL3 luciferase control siRNA following the Silent-Fect kit protocol. After 48 h of transfection, hESCs were exposed to the hormone cocktail for 24 hours or 96 hours of differentiation. key words; siRNA knock-down, hormone cocktail treatment
Project description:Uterine glands and, by inference, their secretions impact uterine receptivity, blastocyst implantation, stromal cell decidualization, and placental development. Changes in gland function across the menstrual cycle are impacted by steroid hormones, estrogen and progesterone, as well as stroma-derived factors. Using an endometrial epithelial organoid (EEO) system, transcriptome and proteome analyses identified distinct responses of the EEO to steroid hormones and prostaglandin E2 (PGE2). Notably, steroid hormones and PGE2 modulated the basolateral secretion of EEO proteins, where cystatin C (CST3) was significantly increased by progesterone and PGE2. CST3 treatment of decidualizing stromal cells significantly decreased the decidualization markers PRL and IGFBP1. The attenuation of stromal cell decidualization via CST3 suggests a role for uterine gland-derived proteins in controlling the extent of decidualization. These findings provide evidence that uterine gland-derived factors directly impact stromal cell decidualization, which has strong implications for better understanding pregnancy establishment and female fertility in humans.
Project description:Proper decidualization is vital in preparation for a potential embryo receptivity, placentation, menstrual health and subsequent endometrial regeneration. Given the importance of extracellular vesicles (EVs) in intercellular communication, and recently in embryo implantation and indicators of menstrual cycle and fertility, we investigated their role during decidualization. Overall, this study provides an insight into distinct variation in sEV composition depending upon the level of decidualization of endometrial stromal cells, with the signaling potential to coordinate endometrial health ranging from embryo implantation, facilitating placentation and subsequent endometrial regeneration.
Project description:Uterine glands and, by inference, their secretions impact uterine receptivity, blastocyst implantation, stromal cell decidualization, and placental development. Changes in gland function across the menstrual cycle are impacted by steroid hormones, estrogen and progesterone, as well as stroma-derived factors. Using an endometrial epithelial organoid (EEO) system, transcriptome and proteome analyses identified distinct responses of the EEO to steroid hormones and prostaglandin E2 (PGE2). Notably, steroid hormones and PGE2 modulated the basolateral secretion of EEO proteins, where cystatin C (CST3) was significantly increased by progesterone and PGE2. CST3 treatment of decidualizing stromal cells significantly decreased the decidualization markers PRL and IGFBP1. The attenuation of stromal cell decidualization via CST3 suggests a role for uterine gland-derived proteins in controlling the extent of decidualization. These findings provide evidence that uterine gland-derived factors directly impact stromal cell decidualization, which has strong implications for better understanding pregnancy establishment and female fertility in humans.
Project description:Endometrial stromal cell decidualization is required for pregnancy success. Although this process is integral to fertility, many of the intricate molecular mechanisms contributing to decidualization remain undefined. One pathway that has been implicated in endometrial stromal cell decidualization in humans in vitro, is the Hippo signaling pathway. Two previously conducted studies showed that the effectors of the Hippo signaling pathway, YAP1 and WWTR1, were required for decidualization of primary stromal cells in culture. To investigate the in vivo role of YAP1 and WWTR1 in decidualization and pregnancy initiation, we generated a Progesterone Cre mediated partial double knockout (pdKO) of Yap1 and Wwtr1. Female pdKOs exhibited subfertility, a compromised decidualization response, partial interruption in embryo transport, blunted endometrial receptivity, delayed implantation and subsequent embryonic development, and a unique transcriptional profile. Bulk mRNA sequencing revealed aberrant maternal remodeling evidenced by significant alterations in extracellular matrix proteins at 7.5 days post coitus in pdKO dams, and enrichment for terms associated with fertility compromising diseases like pre-eclampsia and endometriosis. Our results indicate a required role for YAP1 and WWTR1 for successful mammalian uterine function and pregnancy success.
Project description:The objectives of the present study were to determine whether obesity impacts human decidualization and the endometrial control of trophoblast invasion (both of which are required for embryo implantation) and evaluate the potential involvement of endometrial extracellular vesicles (EVs) in the regulation of these physiological processes. Using primary human cell cultures, we first demonstrated that obesity is associated with significantly lower in vitro decidualization of endometrial stromal cells (ESCs). We then showed that the trophoblastic cell line’s invasive ability was greater in the presence of conditioned media from cultures of ESCs from obese women. Using mass-spectrometry-based quantitative proteomics, we found that EVs isolated from uterine supernatants of biopsies from obese women (vs. nonobese women) presented a molecular signature focused on cell remodeling and angiogenesis. Lastly, the results of functional assays indicated that supplementation of the culture medium with EVs from nonobese women can rescue (at least in part) the defect in in vitro decidualization described in ESCs from obese women. Lastly, the addition of endometrial EVs from obese women (vs. nonobese women) was associated with significantly greater invasive activity by HTR-8/SVneo cells. In conclusion, our results provided new insights into the endometrial EVs’ pivotal role in the poor uterine receptivity observed in obese women.
Project description:Ovarian estrogen (E2) and progesterone (P4) are indispensable for embryo-implantation and endometrial stromal decidualization; however, the molecular mechanisms that underpin these reproductive processes are unclear. Steroid receptor coregulator-2 (SRC-2) belongs to the multifunctional SRC/p160 family which also includes SRC-1 and SRC-3. Sharing strong sequence homology, all three SRCs exert diverse regulatory effects by modulating the transcriptional potency of nuclear receptor family members, including the estrogen and progesterone receptor (ER and PR respectively). Importantly, absence of SRC-2 in PR positive cells in the epithelial, stromal, and myometrial compartments of the murine uterus results in a striking infertility defect. This reproductive phenotype highlights a key role for SRC-2 in uterine function which is not shared with other coregulators. Intriguingly, abrogation of uterine SRC-2 does not block embryo apposition or attachment to the apical surface of luminal epithelial cells of the endometrium but rather prevents P4-dependent local decidualization of the sub-epithelial stroma. Remarkably, epithelial-specific ablation of SRC-2 in the murine uterus does not compromise endometrial functionality, again underscoring the unique importance of stromal derived SRC-2 in uterine function. The stromal decidualization defect resulting from SRC-2 ablation is reflected at the molecular level by a marked attenuation in P4 responsive target genes known to be critical for P4 dependent decidualization (i.e. ERBB receptor feedback inhibitor 1, Follistatin and Fkbp5). Conversely, the induction of E2 or P4 target genes involved in embryo implantation (i.e. leukemia inhibitory factor (LIF) and Indian hedgehog (Ihh) respectively) is not affected by SRC-2’s absence. As with mouse studies, decidualization of primary human stromal cells (HESCs) in culture is blocked by SRC-2 knockdown; however, HESC decidualization is unaffected by knockdown of SRC-1 or SRC-3. As a consequence of SRC-2 knockdown, molecular studies disclose a striking decrease in the induction of a subset of P4 target genes (i.e. WNT4 and FKBP5) which are essential for the stromal-epithelioid transformation step, the cellular hallmark of endometrial decidualization. Collectively, these studies not only showcase the evolutionary importance of SRC-2 in endometrial biology but also suggest that deregulation of this coregulator may underpin a spectrum of hormone-dependent uterine pathologies such as endometriosis and endometrial cancer. Microarray analysis was performed on mouse uteri using eighteen SRC-2flox/flox (SRC-2f/f) and eighteen PRCre/+ SRC-2flox/flox (SRC-2d/d) mice. Mice were ovariectomized at 6 weeks and after 2 weeks mice were either treated with sesame oil (vehicle) or 1 mg of P4. RNA from three mice per genotype per treatment were pooled and assigned as one sample (three samples per genotype per treatment). multiple group comparison
Project description:Ovarian estrogen (E2) and progesterone (P4) are indispensable for embryo-implantation and endometrial stromal decidualization; however, the molecular mechanisms that underpin these reproductive processes are unclear. Steroid receptor coregulator-2 (SRC-2) belongs to the multifunctional SRC/p160 family which also includes SRC-1 and SRC-3. Sharing strong sequence homology, all three SRCs exert diverse regulatory effects by modulating the transcriptional potency of nuclear receptor family members, including the estrogen and progesterone receptor (ER and PR respectively). Importantly, absence of SRC-2 in PR positive cells in the epithelial, stromal, and myometrial compartments of the murine uterus results in a striking infertility defect. This reproductive phenotype highlights a key role for SRC-2 in uterine function which is not shared with other coregulators. Intriguingly, abrogation of uterine SRC-2 does not block embryo apposition or attachment to the apical surface of luminal epithelial cells of the endometrium but rather prevents P4-dependent local decidualization of the sub-epithelial stroma. Remarkably, epithelial-specific ablation of SRC-2 in the murine uterus does not compromise endometrial functionality, again underscoring the unique importance of stromal derived SRC-2 in uterine function. The stromal decidualization defect resulting from SRC-2 ablation is reflected at the molecular level by a marked attenuation in P4 responsive target genes known to be critical for P4 dependent decidualization (i.e. ERBB receptor feedback inhibitor 1, Follistatin and Fkbp5). Conversely, the induction of E2 or P4 target genes involved in embryo implantation (i.e. leukemia inhibitory factor (LIF) and Indian hedgehog (Ihh) respectively) is not affected by SRC-2’s absence. As with mouse studies, decidualization of primary human stromal cells (HESCs) in culture is blocked by SRC-2 knockdown; however, HESC decidualization is unaffected by knockdown of SRC-1 or SRC-3. As a consequence of SRC-2 knockdown, molecular studies disclose a striking decrease in the induction of a subset of P4 target genes (i.e. WNT4 and FKBP5) which are essential for the stromal-epithelioid transformation step, the cellular hallmark of endometrial decidualization. Collectively, these studies not only showcase the evolutionary importance of SRC-2 in endometrial biology but also suggest that deregulation of this coregulator may underpin a spectrum of hormone-dependent uterine pathologies such as endometriosis and endometrial cancer.
Project description:Recurrent implantation failure (RIF) presents a significant challenge in the field of assisted reproductive technology, primarily stemming from compromised decidualization that impacts endometrial receptivity. Despite ongoing research efforts, the comprehensive molecular regulatory mechanisms involved in RIF remain incompletely understood. This study revealed significantly reduced levels of secretoglobin, family 2A, member 1 (SCGB2A1) in both the mid-secretory endometrium and uterine fluid of RIF patients compared to control subjects. Besides, combined with RNA sequencing results, we demonstrated that the suppression of SCGB2A1 results in reduced cell proliferation and impaired decidualization by modulating CDK3 signaling during cell cycle transition in immortalized human endometrial stromal cells (T-HESCs) and primary HESCs. Furthermore, our findings indicated that inhibition of endometrial SCGB2A1 in a rat model hinders embryo implantation and disrupts decidualization. In conclusion, this study provides evidence that SCGB2A1 serves as a novel biomarker for endometrial receptivity and plays a crucial role in the regulation of human endometrial decidualization. The findings offer valuable insights into the pathogenesis of decidualization-related RIF and have the potential to enhance strategies for improving pregnancy outcomes.