Project description:Fusion genes are chromosomal aberrations that are found in many cancers and can be used as prognostic markers and drug targets in clinical practice. Fusions can lead to production of oncogenic fusion proteins or to enhanced expression of oncogenes. Several recent studies have reported that some fusion genes can escape microRNA regulation via 3'-untranslated region (3'-UTR) deletion. We performed whole transcriptome sequencing to identify fusion genes in glioma and discovered FGFR3-TACC3 fusions in 4 of 48 glioblastoma samples from patients both of mixed European and of Asian descent, but not in any of 43 low-grade glioma samples tested. The fusion, caused by tandem duplication on 4p16.3, led to the loss of the 3'-UTR of FGFR3, blocking gene regulation of miR-99a and enhancing expression of the fusion gene. The fusion gene was mutually exclusive with EGFR, PDGFR, or MET amplification. Using cultured glioblastoma cells and a mouse xenograft model, we found that fusion protein expression promoted cell proliferation and tumor progression, while WT FGFR3 protein was not tumorigenic, even under forced overexpression. These results demonstrated that the FGFR3-TACC3 gene fusion is expressed in human cancer and generates an oncogenic protein that promotes tumorigenesis in glioblastoma.
Project description:FGFR3-TACC3 (F3-T3) gene fusions are regarded as a "low-hanging fruit" paradigm for precision therapy in human glioblastoma (GBM). Small molecules designed to target the kinase in FGFR currently serve as one form of potential treatment but cause off-target effects and toxicity. Here, CRISPR-Cas13a, which is known to directly suppress gene expression at the transcriptional level and induce a collateral effect in eukaryotes, was leveraged as a possible precision therapy in cancer cells harboring F3-T3 fusion genes. A library consisting of crRNAs targeting the junction site of F3-T3 was designed, and an in silico simulation scheme was created to select the optimal crRNA candidates. An optimal crRNA, crRNA1, showed efficiency and specificity in inducing the collateral effect in only U87 cells expressing F3-T3 (U87-F3-T3). Expression profiles obtained with microarray analysis were consistent with induction of the collateral effect by the CRISPR-Cas13a system. Tumor cell proliferation and colony formation were decreased in U87-F3-T3 cells expressing the Cas13a-based tool, and tumor growth was suppressed in an orthotopic tumor model in mice. These findings demonstrate that the CRISPR-Cas13a system induces the collateral damage effect in cancer cells and provides a viable strategy for precision tumor therapy based on the customized design of a CRISPR-Cas13a-based tool against F3-T3 fusion genes.
Project description:Fibroblast growth factor receptors (FGFR) are transmembrane kinase proteins with growing importance in cancer biology given the frequency of molecular alterations and vast interface with multiple other signaling pathways. Furthermore, numerous FGFR inhibitors in clinical development demonstrate the expanding therapeutic relevance of this pathway. Indeed, results from early phase clinical trials already indicate that a subset of patients with advanced tumors derive benefit from FGFR targeted therapies. FGFR gene aberrations and FGFR gene rearrangements are relatively rare in solid malignancies. The recently described FGFR3-TACC3 fusion protein has a constitutively active tyrosine kinase domain and promotes aneuploidy. We summarize the prevalence data on FGFR3-TACC3 fusions among different histological tumor types and the preliminary evidence that this rearrangement represents a targetable molecular aberration in some patients with solid tumors.
Project description:BackgroundAdult glioblastomas (GBMs), IDH-wildtype, WHO grade 4 with FGFR3::TACC3 fusion have a better prognosis than standard GBMs. Whether this extended survival leads to late biological consequences is unknown. Although constituting only 4% of all GBMs, FGFR3::TACC3 fusion-positive GBMs manifest recurrent morphological features that allow prediction of this subtype, possibly affecting trial eligibility and/or targeted therapies. However, we have previously shown that an identical histological pattern can be present in wildtype examples, and conversely, occasional FGFR3::TACC3 fusion-positive tumors lack this stereotypic morphology; thus, ultimately molecular characterization is required. We now report for the first time an adult with FGFR3::TACC3 fusion-positive GBM showing archetypal histological features who developed extracranial metastases to provide further insight into potential behavior of the GBM type.MethodsReport of a 70-year-old man with left parietal GBM who developed 2 subsequent metastases, all 3 of which were assessed by next-generation sequencing (NGS) and DNA methylation.ResultsBiopsy-proven dural metastases occurred at 8 months and cervical lymph node metastasis at 12-month post-diagnosis before the patient succumbed at 23 months. By NGS, all 3 tumors showed FGFR3::TACC3 fusion as well as an additional PDZD2::TERT fusion of uncertain significance. DNA methylation profiling demonstrated mesenchymal subtype in the initial biopsy and RTKII subtype in subsequent dural and lymph node metastases, indicating intratumor spatial heterogeneity or temporal evolution.ConclusionRarely, FGFR3::TACC3 fusion-positive GBM patients may develop dural and extracranial metastatic spread, the latter with subclass switching on epigenomic analysis.
Project description:We describe a case of recurrent glioblastoma treated with anlotinib in this report. The patient was administered anlotinib 12 mg p.o. once every day (days 1-14, with a 21-day cycle) (anlotinib clinical study NCT04004975) and oral temozolomide chemotherapy 100 mg/m2 (days 1-7, days 15-21, 28-day cycle; 12 cycles). After 2 months of therapy, the patient achieved a partial response that has been maintained for >17 months of follow-up. Molecular characterization confirmed the presence of a TERT promoter mutation, wild-type IDH1/2, an FGFR3-TACC3 fusion, and FGFR3 amplification in the patient. Anlotinib is a multitarget tyrosine kinase inhibitor that was originally designed to inhibit VEGFR2/3, FGFR1-4, PDGFR?/?, and c-Kit. Patients with TERT promoter mutations and high-grade IDH-wild-type glioma have shorter overall survival than patients with IDH-wild-type glioma without TERT promoter mutations. However, this patient had a favorable clinic outcome, and FGFR3-TACC3 fusion may be a new marker for treatment of glioma with anlotinib. KEY POINTS: This case study is believed to be the first report that FGFR3-TACC3 fusion could be a novel indication to treat recurrent glioblastoma with the drug anlotinib. This case exhibited an exceptional response (maintained partial response >17 months) after 2-month combined therapy of anlotinib and oral temozolomide chemotherapy. This case also underscores the importance of molecular diagnosis for clinically complex cases. Tumor tissue-based assessment of molecular biomarkers in brain tumors has been successfully translated into clinical application.
Project description:Structural rearrangements of the genome can drive lung tumorigenesis through the generation of fusion genes with oncogenic properties. Advanced genomic approaches have identified the presence of a genetic fusion between fibroblast growth factor receptor 3 (FGFR3) and transforming acidic coiled-coil 3 (TACC3) in non-small cell lung cancer (NSCLC), providing a novel target for FGFR inhibition. To interrogate the functional consequences of the FGFR3-TACC3 fusion in the transformation of lung epithelial cells, we generated a novel transgenic mouse model that expresses FGFR3-TACC3 concomitant with loss of the p53 tumor suppressor gene. Intranasal delivery of an Ad5-CMV-Cre virus promoted seromucinous glandular transformation of olfactory cells lining the nasal cavities of FGFR3-TACC3 (LSL-F3T3) mice, which was further accelerated upon loss of p53 (LSL-F3T3/p53). Surprisingly, lung tumors failed to develop in intranasally infected LSL-F3T3 and LSL-F3T3/p53 mice. In line with these observations, we demonstrated that intranasal delivery of Ad5-CMV-Cre induces widespread Cre-mediated recombination in the olfactory epithelium. Intra-tracheal delivery of Ad5-CMV-Cre into the lungs of LSL-F3T3 and LSL-F3T3/p53 mice, however, resulted in the development of lung adenocarcinomas. Taken together, these findings provide in vivo evidence for an oncogenic function of FGFR3-TACC3 in respiratory epithelium.
Project description:Gene expression profiling of SNB19 and U251 glioblastoma cell lines transfected with the FGFR3-TACC3 fusion, FGFR3 wildtype and TACC3 wildtype constructs. SNB19 and U251 cells were transfected with different clones of the FGFR3-TACC3 fusion and with wildtype FGFR3 and TACC3 constructs. Total RNA was extracted and hybridized onto Agilent dual channel gene expression microarrays. In each hybridization, empty vector transfected SNB19 or U251 cells were hybridized into the reference channel.
Project description:The FGFR3-TACC3 (F3-T3) fusion gene was discovered as an oncogenic molecule in glioblastoma and bladder cancers, and has subsequently been found in many cancer types. Notably, F3-T3 was found to be highly expressed in both untreated and matched recurrence glioblastoma under the concurrent radiotherapy and temozolomide (TMZ) treatment, suggesting that targeting F3-T3 is a valid strategy for treatment. Here, we show that the F3-T3 protein is a client of heat shock protein 90 (HSP90), forming a ternary complex with the cell division cycle 37 (CDC37). Deprivation of HSP90 or CDC37 disrupts the formation of the ternary complex, which destabilizes glycosylated F3-T3, and thereby suppresses F3-T3 oncogenic activity. Gliomas harboring F3-T3 are resistant to TMZ chemotherapy. HSP90 inhibitors sensitized F3-T3 glioma cells to TMZ via the inhibition of F3-T3 activation and potentiated TMZ-induced DNA damage. These results demonstrate that F3-T3 oncogenic function is dependent on the HSP90 chaperone system and suggests a new clinical option for targeting this genetic aberration in cancer.
Project description:Adult glioblastomas, IDH-wildtype represent a heterogeneous group of diseases. They are resistant to conventional treatment by concomitant radiochemotherapy and carry a dismal prognosis. The discovery of oncogenic gene fusions in these tumors has led to prospective targeted treatments, but identification of these rare alterations in practice is challenging. Here, we report a series of 30 adult diffuse gliomas with an in frame FGFR3-TACC3 oncogenic fusion (n = 27 WHO grade IV and n = 3 WHO grade II) as well as their histological and molecular features. We observed recurrent morphological features (monomorphous ovoid nuclei, nuclear palisading and thin parallel cytoplasmic processes, endocrinoid network of thin capillaries) associated with frequent microcalcifications and desmoplasia. We report a constant immunoreactivity for FGFR3, which is a valuable method for screening for the FGFR3-TACC3 fusion with 100% sensitivity and 92% specificity. We confirmed the associated molecular features (typical genetic alterations of glioblastoma, except the absence of EGFR amplification, and an increased frequency of CDK4 and MDM2 amplifications). FGFR3 immunopositivity is a valuable tool to identify gliomas that are likely to harbor the FGFR3-TACC3 fusion for inclusion in targeted therapeutic trials.