EXPRESSION QTL MAPPING ACROSS SOIL MOISTURE ENVIRONMENTS REVEALS CONTRASTING ASSOCIATIONS WITH GENOMIC FEATURES IN ARABIDOPSIS THALIANA
Ontology highlight
ABSTRACT: Understanding the patterns and processes driving natural genetic variation in gene expression is of fundamental importance to biology. In this study, we examined genetic variation in gene transcription through expression QTL (eQTL) analysis in the Tsu-1 x Kas-1 recombinant inbred line (RIL) mapping population of Arabidopsis thaliana. To understand how natural variation in transcription responds to abiotic stress, we conducted eQTL in both well watered and soil drying conditions. Further, we evaluated whether elements of genome structure were associated with eQTL occurance and genes responding to treatment conditions. Overall, we identified thousands of genes that responded to soil moisture availability and hundreds of eQTLs. However, we identified very few interactions between eQTLs and environmental conditions, and both treatment conditions were enriched for similar gene ontology (GO) categories. We did find strong evidence for associations between genome structure and natural variation in transcription. In general, genes with eQTLs were positively associated with local recombination rates and levels of polymorphism while genes responding to the treatment were negatively correlated with these factors. Our study provides further insight into the origin and maintenance of natural variation in transcription and how that variation responds to environmental conditions. Expression analysis by hybridization to atSNPTILE array (Affymetrix).
ORGANISM(S): Arabidopsis thaliana
PROVIDER: GSE42408 | GEO | 2013/03/02
SECONDARY ACCESSION(S): PRJNA181341
REPOSITORIES: GEO
ACCESS DATA