Project description:Cohesin acetylation by Eco1 during DNA replication establishes sister chromatid cohesion. We show that acetylation makes cohesin resistant to Wapl activity from S-phase until mitosis. Wapl turns out to be a key regulator of cohesin dynamics on chromosomes by controling cohesin maintenance following its establishment in S-phase and its role in chromosome condensation.
Project description:Cohesin acetylation by Eco1 during DNA replication establishes sister chromatid cohesion. We show that acetylation makes cohesin resistant to Wapl activity from S-phase until mitosis. Wapl turns out to be a key regulator of cohesin dynamics on chromosomes by controling cohesin maintenance following its establishment in S-phase and its role in chromosome condensation. The Affymetrix Yeast Genome 2.0 Arrays were used to analyze the expression profile of wt and waplM-bM-^HM-^F cells.
Project description:Cohesin acetylation by Eco1 during DNA replication establishes sister chromatid cohesion. We show that acetylation makes cohesin resistant to Wapl activity from S-phase until mitosis. Wapl turns out to be a key regulator of cohesin dynamics on chromosomes by controling cohesin maintenance following its establishment in S-phase and its role in chromosome condensation.
Project description:Cohesin acetylation by Eco1 during DNA replication establishes sister chromatid cohesion. We show that acetylation makes cohesin resistant to Wapl activity from S-phase until mitosis. Wapl turns out to be a key regulator of cohesin dynamics on chromosomes by controling cohesin maintenance following its establishment in S-phase and its role in chromosome condensation.
Project description:Cohesin acetylation by Eco1 during DNA replication establishes sister chromatid cohesion. We show that acetylation makes cohesin resistant to Wapl activity from S-phase until mitosis. Wapl turns out to be a key regulator of cohesin dynamics on chromosomes by controling cohesin maintenance following its establishment in S-phase and its role in chromosome condensation. The Affymetrix Saccharomyces cerevisiae Chip Tiling 1.0R Arrays were used to analyze the binding pattern of Scc1 along the genome of Saccharomyces cerevisiae in late G1 and metaphase arrested cells.
Project description:Cohesin acetylation by Eco1 during DNA replication establishes sister chromatid cohesion. We show that acetylation makes cohesin resistant to Wapl activity from S-phase until mitosis. Wapl turns out to be a key regulator of cohesin dynamics on chromosomes by controling cohesin maintenance following its establishment in S-phase and its role in chromosome condensation. The Affymetrix Saccharomyces cerevisiae Chip Tiling 1.0F Arrays were used to analyze the incorporation of BrdU in Saccharomyces cerevisiae in S-phase arrested cells.
Project description:The Saccharomyces cerevisiae RecQ-mediated genome instability (Rmi1) protein was recently identified as the third member of the slow growth suppressor 1-DNA topoisomerase III (Sgs1-Top3) complex, which is required for maintaining genomic stability. Here, we show that cells lacking RMI1 have a mitotic delay, which is partly dependent on the spindle checkpoint, and are sensitive to the microtubule depolymerizing agent benomyl. We show that rmi1 and top3 single mutants are defective in sister chromatid cohesion, and that deletion of SGS1 suppresses benomyl sensitivity and the cohesion defect in these mutant cells. Loss of RAD51 also suppresses the cohesion defect of rmi1 mutant cells. These results indicate the existence of a new pathway involving Rad51 and Sgs1-Top3-Rmi1, which leads to the establishment of sister chromatid cohesion.
Project description:Gain or loss of chromosomes resulting in aneuploidy can be important factors in cancer and adaptive evolution. Although chromosome gain is a frequent event in eukaryotes, there is limited information on its genetic control. Here we measured the rates of chromosome gain in wild-type yeast and sister chromatid cohesion (SCC) compromised strains. SCC tethers the newly replicated chromatids until anaphase via the cohesin complex. Chromosome gain was measured by selecting and characterizing copper-resistant colonies that emerged due to increased copies of the metallothionein gene CUP1. Although all defective SCC diploid strains exhibited increased rates of chromosome gain, there were 15-fold differences between them. Of all mutants examined, a hypomorphic mutation at the cohesin complex caused the highest rate of chromosome gain while disruption of WPL1, an important regulator of SCC and chromosome condensation, resulted in the smallest increase in chromosome gain. In addition to defects in SCC, yeast cell type contributed significantly to chromosome gain, with the greatest rates observed for homozygous mating-type diploids, followed by heterozygous mating type, and smallest in haploids. In fact, wpl1-deficient haploids did not show any difference in chromosome gain rates compared to wild-type haploids. Genomic analysis of copper-resistant colonies revealed that the "driver" chromosome for which selection was applied could be amplified to over five copies per diploid cell. In addition, an increase in the expected driver chromosome was often accompanied by a gain of a small number of other chromosomes. We suggest that while chromosome gain due to SCC malfunction can have negative effects through gene imbalance, it could also facilitate opportunities for adaptive changes. In multicellular organisms, both factors could lead to somatic diseases including cancer.
Project description:The S. cerevisiae MCD1 (mitotic chromosome determinant) gene was identified in genetic screens for genes important for chromosome structure. MCD1 is essential for viability and homologs are found from yeast to humans. Analysis of the mcd1 mutant and cell cycle-dependent expression pattern of Mcd1p suggest that this protein functions in chromosome morphogenesis from S phase through mitosis. The mcd1 mutant is defective in sister chromatid cohesion and chromosome condensation. The physical association between Mcd1p and Smc1p, one of the SMC family of chromosomal proteins, further suggests that Mcd1p functions directly on chromosomes. These data implicate Mcd1p as a nexus between cohesion and condensation. We present a model for mitotic chromosome structure that incorporates this previously unsuspected link.