Project description:Characterizing a common cellular stress response (CSR) to high water temperature across species and populations is necessary for identifying the capacity of Pacific salmon (Oncorhynchus spp.) to persist in current and future climate warming scenarios, especially for populations at the southern periphery of their species' distributions. In this study, populations of wild adult pink (O. gorbuscha) and sockeye (O. nerka) salmon from the Fraser River, British Columbia, Canada, were experimentally treated to an ecologically relevant 'cool' or 'warm' water temperature to uncover common transcriptomic responses to elevated water temperature.
Project description:Characterizing a common cellular stress response (CSR) to high water temperature across species and populations is necessary for identifying the capacity of Pacific salmon (Oncorhynchus spp.) to persist in current and future climate warming scenarios, especially for populations at the southern periphery of their species' distributions. In this study, populations of wild adult pink (O. gorbuscha) and sockeye (O. nerka) salmon from the Fraser River, British Columbia, Canada, were experimentally treated to an ecologically relevant 'cool' or 'warm' water temperature to uncover common transcriptomic responses to elevated water temperature.
Project description:Characterizing a common cellular stress response (CSR) to high water temperature across species and populations is necessary for identifying the capacity of Pacific salmon (Oncorhynchus spp.) to persist in current and future climate warming scenarios, especially for populations at the southern periphery of their species' distributions. In this study, populations of wild adult pink (O. gorbuscha) and sockeye (O. nerka) salmon from the Fraser River, British Columbia, Canada, were experimentally treated to an ecologically relevant 'cool' or 'warm' water temperature to uncover common transcriptomic responses to elevated water temperature.
Project description:Characterizing the cellular stress response (CSR) of species at ecologically relevant temperatures is useful for determining whether populations and species can successfully respond to current climatic extremes and future warming. In this study, populations of wild-caught adult pink (Oncorhynchus gorbuscha) and sockeye (Oncorhynchus nerka) salmon from the Fraser River, British Columbia, Canada, were experimentally treated to ecologically relevant 'cool' or 'warm' water temperatures to uncover common transcriptomic responses to elevated water temperature in non-lethally sampled gill tissue. We detected the differential expression of 49 microarray features (29 unique annotated genes and one gene with unknown function) associated with protein folding, protein synthesis, metabolism, oxidative stress and ion transport that were common between populations and species of Pacific salmon held at 19°C compared with fish held at a cooler temperature (13 or 14°C). There was higher mortality in fish held at 19°C, which suggests a possible relationship between a temperature-induced CSR and mortality in these species. Our results suggest that frequently encountered water temperatures ≥19°C, which are capable of inducing a common CSR across species and populations, may increase risk of upstream spawning migration failure for pink and sockeye salmon.
Project description:Characterizing a common cellular stress response (CSR) to high water temperature across species and populations is necessary for identifying the capacity of Pacific salmon (Oncorhynchus spp.) to persist in current and future climate warming scenarios, especially for populations at the southern periphery of their species' distributions. In this study, populations of wild adult pink (O. gorbuscha) and sockeye (O. nerka) salmon from the Fraser River, British Columbia, Canada, were experimentally treated to an ecologically relevant 'cool' or 'warm' water temperature to uncover common transcriptomic responses to elevated water temperature. Ninety-eight samples from three separate temperature exposure studies were analyzed on ninety-eight microarrays, using a common reference design, with multiple biological replicates for each temperature condition for each year of the experiment.
Project description:Characterizing a common cellular stress response (CSR) to high water temperature across species and populations is necessary for identifying the capacity of Pacific salmon (Oncorhynchus spp.) to persist in current and future climate warming scenarios, especially for populations at the southern periphery of their species' distributions. In this study, populations of wild adult pink (O. gorbuscha) and sockeye (O. nerka) salmon from the Fraser River, British Columbia, Canada, were experimentally treated to an ecologically relevant 'cool' or 'warm' water temperature to uncover common transcriptomic responses to elevated water temperature. Ninety-eight samples from three separate temperature exposure studies were analyzed on ninety-eight microarrays, using a common reference design, with multiple biological replicates for each temperature condition for each year of the experiment.