Transcriptomics

Dataset Information

0

Colon transcriptional response to quercetin in WT and POR-null mice


ABSTRACT: Using mice deficient in hepatic cytochrome-P450 oxidoreductase (POR), which disables the liver cytochrome P450 system, the metabolism and biological response of the anti-carcinogenic flavonoid, quercetin, was examined. Profiling circulating metabolites revealed similar profiles over 72 h in wild type (WT) and POR-null (KO) mice, showing that hepatic P450 and reduced biliary secretion do not affect quercetin metabolism. Transcriptional profiling at 24 h revealed that 2-3 fold more genes responded significantly to quercetin in WT compared to KO in the jejunum, ileum, colon, and liver, suggesting that hepatic P450s mediate many of the biological effects of quercetin, such as immune function, estrogen receptor signaling and lipid, glutathione, purine, and amino acid metabolism, even though quercetin metabolism is not modified. The functional interpretation of expression data in response to quercetin (single dose of 7 mg/animal) revealed a molecular relationship between the liver and jejunum. In WT animals, amino acid and sterol metabolism were predominantly modulated in the liver, fatty acid metabolism response was shared between the liver and jejunum, and glutathione metabolism was modulated in the small intestine. In contrast, KO animals do not regulate amino acid metabolism in the liver or small intestine, they share the control of fatty acid metabolism between the liver and jejunum, and regulation of sterol metabolism is shifted from the liver to the jejunum and that of glutathione metabolism from the jejunum to the liver. This demonstrates that the quercetin-mediated regulation of these biological functions in extrahepatic tissues is dependent on the functionality of the liver POR. In conclusion, using a systems biology approach to explore the contribution of hepatic phase I detoxification on quercetin metabolism demonstrated the resiliency and adaptive capacity of a biological organism in dealing with a bioactive nutrient when faced with a tissue-specific molecular dysfunction. Keywords: nutritional intervention, comparative genomic response, genotype variation

ORGANISM(S): Mus musculus

PROVIDER: GSE4256 | GEO | 2006/03/01

SECONDARY ACCESSION(S): PRJNA104623

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2006-03-01 | GSE4257 | GEO
2006-03-01 | GSE4258 | GEO
2006-03-01 | GSE4259 | GEO
2008-06-13 | E-GEOD-4256 | biostudies-arrayexpress
2008-06-13 | E-GEOD-4259 | biostudies-arrayexpress
2008-06-13 | E-GEOD-4257 | biostudies-arrayexpress
2008-06-13 | E-GEOD-4258 | biostudies-arrayexpress
2013-02-05 | E-GEOD-39140 | biostudies-arrayexpress
2013-02-05 | GSE39140 | GEO
2007-11-06 | E-GEOD-4262 | biostudies-arrayexpress