Project description:Investigation of whole genome gene expression level changes in Aspergillus nidulans OE::rsmA compared to wild-type RDIT9.32 (veA). A twelve array study using total RNA recovered from six separate cultures of Aspergillus nidulans wild-type RDIT9.32 (veA) and six separate cultures of Aspergillus nidulans overexpressing rsmA (restorer of secondary metabolism A), using custom-designed, four-plex arrays. The experiment was divided into two runs. In the first run, three biological replicates each of Aspergillus nidulans wild-type RDIT9.32 (veA) and Aspergillus nidulans carrying a plasmid overexpressing rsmA under the control of the gpdA promoter were assayed. In the second run, three biological replicates each of Aspergillus nidulans wild-type RDIT9.32 (veA) and Aspergillus nidulans overexpressing rsmA at the native locus under the control of the gpdA promoter were assayed.
Project description:Investigation of whole genome gene expression level changes in Aspergillus nidulans AN1599 (PbcR) overexpression mutant, compared to the FGSC A4 wild-type strain. Overexpression of the Zn(II)2Cys6 –type transcription factor, AN1599.4 (PbcR, pimaradiene biosynthetic cluster regulator), activates a secondary metabolite gene cluster in Aspergillus nidulans. Activation of the pathway in Aspergillus nidulans lead to a production of ent-pimara-8(14),15-diene.
Project description:In Aspergillus nidulans, nitrogen and carbon metabolism are under the control of wide-domain regulatory systems, including nitrogen metabolite repression, carbon catabolite repression. Transcriptomic analysis of the wild type strain grown under different combinations of carbon and nitrogen regimes was performed, to identify differentially regulated genes. Carbon metabolism predominates as the most important regulatory signal but for many genes, both carbon and nitrogen metabolisms coordinate regulation.
Project description:We have a cDNA microarray to investigate changes in gene expression following transfer of fungal cultures from growth on glucose to growth on pectin or no carbon source. Our goal was to asses the roles of release from carbon catabolite repression and specific induction on proteins needed for metabolism (or utilization) of a single class of complex polysaccharide. Keywords = Aspergillus Keywords = Pectin Keywords = central metabolism Keywords = pectin Keywords = carbon catabolite repression Keywords = polysaccharide Keywords = exopolygalacturonase Keywords: time-course
Project description:Understanding the coordinated regulation of the hundreds of carbohydrate-active enzyme (CAZyme) genes occurring in the genomes of fungi has great practical importance. We recorded genome-wide transcriptional changes of Aspergillus nidulans cultivated on glucose, lactose or arabinogalactan as well as under carbon starved conditions. We determined both carbon stress specific changes (a carbon stress vs. glucose) and culture specific changes (a culture vs. all other cultures). Many CAZyme genes showed carbon stress specific and/or culture specific upregulation on arabinogalactan (138 and 62 genes, respectively). Besides galactosidase and arabinan degrading enzyme genes, enrichment of cellulolytic, pectinolytic, mannan and xylan degrading enzyme genes were observed in these gene sets. Less, 81 and 107 carbon stress specific as well as 6 and 16 culture specific upregulated genes were found on lactose and in carbon starved cultures, respectively. They were enriched only in galactosidase and xylosidase genes on lactose and rhamnogalacturonanase genes in both cultures. Some CAZyme genes (29 genes) showed culture specific upregulation on glucose and they were enriched in beta-1,4-glucanase genes. Behavioral ecological background of these characteristics was evaluated to organize comprehensively our knowledge on CAZyme production, which can lead to develop new strategies to produce enzymes for plant cell wall saccharification.
Project description:Gene expression analysis of four different treatments of Aspergillus nidulans. reference line (A.nidulans), line A (A.nidulans + Streptomyces rapamycinicus), line B (A.nidulans + orsellinic acid), line C (A.nidulans + lecanoric acid)
Project description:We have a cDNA microarray to investigate changes in gene expression following transfer of fungal cultures from growth on glucose to growth on pectin or no carbon source. Our goal was to asses the roles of release from carbon catabolite repression and specific induction on proteins needed for metabolism (or utilization) of a single class of complex polysaccharide. Keywords = Aspergillus Keywords = Pectin Keywords = central metabolism Keywords = pectin Keywords = carbon catabolite repression Keywords = polysaccharide Keywords = exopolygalacturonase