Genome-wide identification of PIF1-binding sites and direct-target genes of PIF1 transcriptional regulation in skotomorphogenesis
Ontology highlight
ABSTRACT: Dark-grown seedlings exhibit skotomorphogenic development. Genetic and molecular evidence indicates that a quartet of Arabidopsis Phytochrome (phy)-Interacting bHLH Factors (PIF1, 3, 4 and 5) are critically necessary to maintaining this developmental state, and that light activation of phy induces a switch to photomorphogenic development by inducing rapid degradation of the PIFs. Here, using combined ChIP-seq and RNA-seq analyses, we have identified genes that are direct targets of PIF1 transcriptional regulation, and we provide evidence that the quartet collectively regulate these genes by shared, direct binding to the target promoters in promoting skotomorphogenesis.
Project description:Dark-grown seedlings exhibit skotomorphogenic development. Genetic and molecular evidence indicates that a quartet of Arabidopsis Phytochrome (phy)-Interacting bHLH Factors (PIF1, 3, 4 and 5) are critically necessary to maintaining this developmental state, and that light activation of phy induces a switch to photomorphogenic development by inducing rapid degradation of the PIFs. Here, using combined ChIP-seq and RNA-seq analyses, we have identified genes that are direct targets of PIF1 transcriptional regulation, and we provide evidence that the quartet collectively regulate these genes by shared, direct binding to the target promoters in promoting skotomorphogenesis. Three biological replicates data of PIF1-binding sites were collected by comparing the parallel ChIP samples from Myc-epitope-tagged-PIF1 (P1M) overexpressing transgenic seedlings and the wild-type (WT) control.
Project description:Dark-grown seedlings exhibit skotomorphogenic development. Genetic and molecular evidence indicates that a quartet of Arabidopsis Phytochrome (phy)-Interacting bHLH Factors (PIF1, 3, 4 and 5) are critically necessary to maintaining this developmental state, and that light activation of phy induces a switch to photomorphogenic development by inducing rapid degradation of the PIFs. Here, using combined ChIP-seq and RNA-seq analyses, we have identified genes that are direct targets of PIF3 transcriptional regulation, and we provide evidence that the quartet collectively regulate these genes by shared, direct binding to the target promoters in promoting skotomorphogenesis.
Project description:Dark-grown seedlings exhibit skotomorphogenic development. Genetic and molecular evidence indicates that a quartet of Arabidopsis Phytochrome (phy)-Interacting bHLH Factors (PIF1, 3, 4 and 5) are critically necessary to maintaining this developmental state, and that light activation of phy induces a switch to photomorphogenic development by inducing rapid degradation of the PIFs. Here, using combined ChIP-seq and RNA-seq analyses, we have identified genes that are direct targets of PIF3 transcriptional regulation, and we provide evidence that the quartet collectively regulate these genes by shared, direct binding to the target promoters in promoting skotomorphogenesis.
Project description:Dark-grown seedlings exhibit skotomorphogenic development. Genetic and molecular evidence indicates that a quartet of Arabidopsis Phytochrome (phy)-Interacting bHLH Factors (PIF1, 3, 4 and 5) are critically necessary to maintaining this developmental state, and that light activation of phy induces a switch to photomorphogenic development by inducing rapid degradation of the PIFs. Here, using combined ChIP-seq and RNA-seq analyses, we have identified genes that are direct targets of PIF3 transcriptional regulation, and we provide evidence that the quartet collectively regulate these genes by shared, direct binding to the target promoters in promoting skotomorphogenesis. Transcriptomic profiles of the wild-type (WT), pif3 monogenic mutant, pif1pif4pif5 (pif145) triple mutant, and pif1pif3pif4pif5 (pifq) quadruple mutant were collected from biological triplicates using 3'-end-captured directional RNA-seq analysis.
Project description:Dark-grown seedlings exhibit skotomorphogenic development. Genetic and molecular evidence indicates that a quartet of Arabidopsis Phytochrome (phy)-Interacting bHLH Factors (PIF1, 3, 4 and 5) are critically necessary to maintaining this developmental state, and that light activation of phy induces a switch to photomorphogenic development by inducing rapid degradation of the PIFs. Here, using combined ChIP-seq and RNA-seq analyses, we have identified genes that are direct targets of PIF3 transcriptional regulation, and we provide evidence that the quartet collectively regulate these genes by shared, direct binding to the target promoters in promoting skotomorphogenesis. Four biological replicates data of PIF3-binding sites were collected by comparing the parallel ChIP samples from transgenic seedlings overexpressing Myc-epitope-tagged PIF3 (35S:PIF3-5xMyc, P3M) in pif3-3 null mutant background and the wild-type (WT) control.
Project description:Dark-grown seedlings exhibit skotomorphogenic development. Genetic and molecular evidence indicates that a quartet of Arabidopsis Phytochrome (phy)-Interacting bHLH Factors (PIF4, 3, 4 and 5) are critically necessary to maintaining this developmental state, and that light activation of phy induces a switch to photomorphogenic development by inducing rapid degradation of the PIFs. Here, using combined ChIP-seq and RNA-seq analyses, we have identified genes that are direct targets of PIF4 transcriptional regulation, and we provide evidence that the quartet collectively regulate these genes by shared, direct binding to the target promoters in promoting skotomorphogenesis.
Project description:Dark-grown seedlings exhibit skotomorphogenic development. Genetic and molecular evidence indicates that a quartet of Arabidopsis Phytochrome (phy)-Interacting bHLH Factors (PIF4, 3, 4 and 5) are critically necessary to maintaining this developmental state, and that light activation of phy induces a switch to photomorphogenic development by inducing rapid degradation of the PIFs. Here, using combined ChIP-seq and RNA-seq analyses, we have identified genes that are direct targets of PIF4 transcriptional regulation, and we provide evidence that the quartet collectively regulate these genes by shared, direct binding to the target promoters in promoting skotomorphogenesis. Three biological replicates data of PIF4-binding sites were collected by comparing the parallel ChIP samples from Myc-epitope-tagged-PIF4 (P1M) overexpressing transgenic seedlings and the wild-type (WT) control.
Project description:Light initiates the seedling deetiolation transition by promoting major changes in gene expression mainly regulated by phytochrome (phy) photoreceptors. During the initial dark-to-light transition, phy photoactivation induces rapid changes in gene expression that eventually lead to the photomorphogenic development. Recent reports indicate that this process is achieved by phy-induced degradation of Phy-Interacting bHLH transcription Factors (PIFs) PIF1, PIF3 PIF4 and PIF5, which are partly redundant constitutive repressors of photomorphogenesis that accumulate in darkness. In order to test whether light/phy-regulated gene expression occurs through these PIFs, we have performed whole-genome expression analysis in the pif1pif3pif4pif5 quadruple mutant (pifq).
Project description:Light initiates the seedling deetiolation transition by promoting major changes in gene expression mainly regulated by phytochrome (phy) photoreceptors. During the initial dark-to-light transition, phy photoactivation induces rapid changes in gene expression that eventually lead to the photomorphogenic development. Recent reports indicate that this process is achieved by phy-induced degradation of Phy-Interacting bHLH transcription Factors (PIFs) PIF1, PIF3 PIF4 and PIF5, which are partly redundant constitutive repressors of photomorphogenesis that accumulate in darkness. In order to test whether light/phy-regulated gene expression occurs through these PIFs, we have performed whole-genome expression analysis in the pif1pif3pif4pif5 quadruple mutant (pifq). Wild-type and pifq mutant seeds were plated on GM medium without sucrose at room temperature. During this procedure the seeds were routinely exposed to white light (WL) for a total of 1.5 hours after imbibition. Seeds were then stratified for 5 days at 4ºC in darkness, induced to germinate with a 5-min red pulse (Rp) (46 μmol/m2/s) and then incubated in the dark for 3h at 21°C before exposure to a terminal 5-min far red pulse (FRp) (58 μmol/m2/s) to suppress pseudo-dark effects. Seeds were then placed in either dark (D) or constant red light (Rc) (6.7 μmol/ m2/s) at 21°C for 45h (2d-old seedlings). Alternatively, 2d-old dark-grown seedlings were treated with 1h of red light (R1) (7.5 μmol/m2/s). Seed samples were harvested after stratification (5d stratified seeds).
Project description:The transition between growth in the dark (skotomorphogenesis) and growth in the light (photomorphogenesis) is one of the most critical in plant development. Here the newly identified mutant dez is photomorphogenic in the dark and is strongly enhanced in high Zn. dez displays a shortened hypocotyl, expanded cotyledons, an elongated root and differentiated plastids in the dark contrast to wild-type seedlings that are typically skotomorphogenic, with a long hypocotyl and unexpanded cotyledons protected by an apical hook, and undifferentiated etioplasts We used microarrays to identify transcripts regulated in dez in high-Zn relative to wild-type in high-Zn, and dez in high-Zn relative to dez in control conditions.