Budding yeast ATM/ATR contribute to meiotic double-strand-break (DSB) homeostasis by down-regulating Rec114, an essential component of the DSB-machinery
Ontology highlight
ABSTRACT: In most organisms, meiotic recombination begins with programmed DNA double strand break (DSB) formation by Spo11. Here, we present evidence that Tel1/Mec1, the budding yeast ATM/ATR, regulate DSB formation by phosphorylating Rec114, an essential Spo11-accessory protein. Analyses of a non-phosphorylatable- or phosphomimetic- alleles of rec114 revealed that DSB-dependent phosphorylation of Rec114 limited its association with DSB-hotspots resulting in reduction in DSB formation. Also observed were the impact of Rec114 phosphorylation on its homolog synapsis-associated removal from chromosomes and NDT80-dependent turnover. Specifically, we found that the synapsis- and NDT80-dependent Rec114 downregulation occurred later in the rec114 mutant with a reduced Spo11-catalysis, but earlier in the other with an enhanced catalysis, strongly implicating the existence of a feedback mechanism coupling the extent of Spo11-catalysis to Rec114 activity. Taken together, these observations suggest that three different mechanisms of down regulating Rec114 contribute to meiotic DSB homeostasis, a feedback mechanism to maintain the number of meiotic DSBs at the developmentally programmed level.
Project description:In most organisms, meiotic recombination begins with programmed DNA double strand break (DSB) formation by Spo11. Here, we present evidence that Tel1/Mec1, the budding yeast ATM/ATR, regulate DSB formation by phosphorylating Rec114, an essential Spo11-accessory protein. Analyses of a non-phosphorylatable- or phosphomimetic- alleles of rec114 revealed that DSB-dependent phosphorylation of Rec114 limited its association with DSB-hotspots resulting in reduction in DSB formation. Also observed were the impact of Rec114 phosphorylation on its homolog synapsis-associated removal from chromosomes and NDT80-dependent turnover. Specifically, we found that the synapsis- and NDT80-dependent Rec114 downregulation occurred later in the rec114 mutant with a reduced Spo11-catalysis, but earlier in the other with an enhanced catalysis, strongly implicating the existence of a feedback mechanism coupling the extent of Spo11-catalysis to Rec114 activity. Taken together, these observations suggest that three different mechanisms of down regulating Rec114 contribute to meiotic DSB homeostasis, a feedback mechanism to maintain the number of meiotic DSBs at the developmentally programmed level. 6 genome wide ChIPchip sets: 3 for meiotic DSB formation (Spo11-ChIP) and 3 for protein-DNA association (Rec114-ChIP), each for wild type and two mutants during meiosis (corresponding to the main Figure 3, as well as to Figures S3, S4, S5).
Project description:During gamete formation, crossover recombination must occur on replicated DNA to ensure proper chromosome segregation in the first meiotic division. We identified a Mec1/ATR-dependent replication checkpoint in budding yeast that prevented the earliest stage of recombination, the programmed induction of DNA double-strand breaks (DSBs), when pre-meiotic DNA replication was delayed. The checkpoint suppressed DSBs through three complementary mechanisms: inhibition of Mer2 phosphorylation by Dbf4-dependent Cdc7 kinase, preclusion of chromosomal loading of Rec114 and Mre11, and lowered abundance of the Spo11 nuclease. Without this checkpoint, cells formed DSBs on partially replicated chromosomes. Importantly, such DSBs frequently failed to be repaired and impeded further DNA synthesis, leading to a rapid loss in cell viability. We conclude that a checkpoint-dependent constraint of DSB formation to duplicated DNA is critical not only for meiotic chromosome assortment, but also to protect genome integrity during gametogenesis. DSB factor association was measured in wild-type and checkpoint mutants strains under non-inducing or replication checkpoint inducing conditions. Additionally, DNA replication and helicase loading were measured in a replication and checkpoint deficient strain (cdc6-mn).
Project description:During meiosis, genetic recombination is initiated by the formation of many DNA double-strand breaks (DSBs) catalysed by the evolutionarily conserved topoisomerase-like enzyme, Spo11, in preferred genomic sites known as hotspots. DSB formation activates the Tel1/ATM DNA damage responsive (DDR) kinase, locally inhibiting Spo11 activity in adjacent hotspots via a process known as DSB interference. Intriguingly, in S. cerevisiae, over short genomic distances (<15 kb), Spo11 activity displays characteristics of concerted activity or clustering, wherein the frequency of DSB formation in adjacent hotspots is greater than expected by chance. We have proposed that clustering is caused by a limited number of sub-chromosomal domains becoming primed for DSB formation. Here, we provide evidence that DSB clustering is abolished when meiotic prophase timing is extended via deletion of the NDT80 transcription factor. We propose that extension of meiotic prophase enables most cells, and therefore most chromosomal domains within them, to reach an equilibrium state of similar Spo11-DSB potential, reducing the impact that priming has on estimates of coincident DSB formation. Consistent with this view, when Tel1 is absent but Ndt80 is present and thus cells are able to rapidly exit meiotic prophase, genome-wide maps of Spo11-DSB formation are skewed towards pericentromeric regions and regions that load pro-DSB factors early—revealing regions of preferential priming—but this effect is abolished when NDT80 is deleted. Our work highlights how the stochastic nature of Spo11-DSB formation in individual cells within the limited temporal window of meiotic prophase can cause localised DSB clustering—a phenomenon that is exacerbated in tel1∆ cells due to the dual roles that Tel1 has in DSB interference and meiotic prophase checkpoint control.
Project description:During gamete formation, crossover recombination must occur on replicated DNA to ensure proper chromosome segregation in the first meiotic division. We identified a Mec1/ATR-dependent replication checkpoint in budding yeast that prevented the earliest stage of recombination, the programmed induction of DNA double-strand breaks (DSBs), when pre-meiotic DNA replication was delayed. The checkpoint suppressed DSBs through three complementary mechanisms: inhibition of Mer2 phosphorylation by Dbf4-dependent Cdc7 kinase, preclusion of chromosomal loading of Rec114 and Mre11, and lowered abundance of the Spo11 nuclease. Without this checkpoint, cells formed DSBs on partially replicated chromosomes. Importantly, such DSBs frequently failed to be repaired and impeded further DNA synthesis, leading to a rapid loss in cell viability. We conclude that a checkpoint-dependent constraint of DSB formation to duplicated DNA is critical not only for meiotic chromosome assortment, but also to protect genome integrity during gametogenesis.
Project description:Meiotic recombination between homologous chromosomes initiates via programmed DNA double-strand breaks (DSBs), generated by complexes comprising Spo11 transesterase plus accessory proteins. DSBs arise concomitantly with the development of axial chromosome structures, where the coalescence of axis sites produces linear arrays of chromatin loops. Recombining DNA sequences map to loops, but are ultimately tethered to the underlying axis. How and when such tethering occurs is currently unclear. Using ChIPchip in yeast, we show that Spo11-accessory proteins Rec114, Mer2 and Mei4 stably interact with chromosome axis sequences, upon phosphorylation of Mer2 by S-phase Cdk. This axis tethering requires meiotic axis components (Red1/Hop1) and is modulated in a domain-specific fashion by cohesin. Loss of Rec114, Mer2 and Mei4 binding correlates with loss of DSBs. Our results strongly suggest that hotspot sequences become tethered to axis sites by the DSB machinery prior to DSB formation.
Project description:Meiotic recombination promotes genetic diversification as well as pairing and segregation of homologous chromosomes, but the double-strand breaks (DSBs) that initiate recombination are dangerous lesions that can cause mutation or meiotic failure. How cells control DSBs to balance between beneficial and deleterious outcomes is not well understood. This study tests the hypothesis that DSB control involves a network of intersecting regulatory circuits. We show that DSBs form in greater numbers in Saccharomyces cerevisiae cells lacking ZMM proteins, a suite of recombination-promoting factors traditionally regarded as acting strictly downstream of DSB formation. This counterintuitive result suggests that homologous chromosomes that have successfully engaged one another stop making DSBs, and provides new insight into phenotypes of zmm and other recombination-defective mutants. A genetically distinct pathway ties DSB formation to meiotic progression through the Ndt80 transcription factor. High-resolution genome-wide DSB maps generated by sequencing short oligonucleotides covalently bound to Spo11 (Spo11 oligos) demonstrate that feedback tied to ZMM function contributes in unexpected ways to spatial patterning of the recombination landscape. Four samples total: two wild type and two zip3 mutant (each an independent culture)
Project description:DNA double strand breaks (DSBs) in repetitive sequences are a potent source of genomic instability, due to the possibility of non-allelic homologous recombination (NAHR). Repetitive sequences are especially at risk during meiosis, when numerous programmed DSBs are introduced into the genome to initiate meiotic recombination 1. Within the budding yeast repetitive ribosomal (r)DNA array, meiotic DSB formation is prevented in part through Sir2-dependent heterochromatin 2,3. Here, we demonstrate that the edges of the rDNA array are exceptionally susceptible to meiotic DSBs, revealing an inherent heterogeneity within the rDNA array. We find that this localised DSB susceptibility necessitates a border-specific protection system consisting of the meiotic ATPase Pch2 and the origin recognition complex subunit Orc1. Upon disruption of these factors, DSB formation and recombination specifically increased in the outermost rDNA repeats, leading to NAHR and rDNA instability. Strikingly, the Sir2-dependent heterochromatin of the rDNA itself was responsible for the induction of DSBs at the rDNA borders in pch2? cells. Thus, while Sir2 activity globally prevents meiotic DSBs within the rDNA, it creates a highly permissive environment for DSB formation at the heterochromatin/euchromatin junctions. Heterochromatinised repetitive DNA arrays are abundantly present in most eukaryotic genomes. Our data define the borders of such chromatin domains as distinct high-risk regions for meiotic NAHR, whose protection may be a universal requirement to prevent meiotic genome rearrangements associated with genomic diseases and birth defects. This SuperSeries is composed of the following subset Series: GSE30071: ssDNA mapping in dmc1 strains GSE30072: ChIP-chip of DSB factors in wild type and pch2 strains Two types of study were undertaken to understand the regulation of meiotic DSB formation close to repetitive DNA elements in yeast. First, DSBs were mapped using ssDNA enrichment in strains isogenic for a dmc1 mutation, and also including pch2 delete, orc1-161, rdna delete and a reciprocal translocation between chromosomes 2 and 12 (trans2to12). Second, the association of the DSB factors Hop1, Rec114, Mer2, and Mre1, as well as total histone H3 and H3K4-trimethylation were measured by ChIP-chip analysis in wild-type and pch2 delete strains.
Project description:Meiotic recombination promotes genetic diversification as well as pairing and segregation of homologous chromosomes, but the double-strand breaks (DSBs) that initiate recombination are dangerous lesions that can cause mutation or meiotic failure. How cells control DSBs to balance between beneficial and deleterious outcomes is not well understood. This study tests the hypothesis that DSB control involves a network of intersecting regulatory circuits. We show that DSBs form in greater numbers in Saccharomyces cerevisiae cells lacking ZMM proteins, a suite of recombination-promoting factors traditionally regarded as acting strictly downstream of DSB formation. This counterintuitive result suggests that homologous chromosomes that have successfully engaged one another stop making DSBs, and provides new insight into phenotypes of zmm and other recombination-defective mutants. A genetically distinct pathway ties DSB formation to meiotic progression through the Ndt80 transcription factor. High-resolution genome-wide DSB maps generated by sequencing short oligonucleotides covalently bound to Spo11 (Spo11 oligos) demonstrate that feedback tied to ZMM function contributes in unexpected ways to spatial patterning of the recombination landscape.
Project description:The Spo11-generated double-strand breaks (DSBs) that initiate meiotic recombination are dangerous lesions that can disrupt genome integrity, so meiotic cells regulate their number, timing, and distribution. Here, we use Spo11-oligonucleotide complexes, a byproduct of DSB formation, to examine the contribution of the DNA damage-responsive kinase Tel1 (ortholog of mammalian ATM) to this regulation in Saccharomyces cerevisiae. A tel1Î mutant had globally increased amounts of Spo11-oligonucleotide complexes and altered Spo11-oligonucleotide lengths, consistent with conserved roles for Tel1 in control of DSB number and processing. A kinase-dead tel1 mutation also increased Spo11-oligonucleotide levels, but mutating known Tel1 phosphotargets on Hop1 and Rec114 did not. Deep sequencing of Spo11 oligonucleotides from tel1Î mutants demonstrated that Tel1 shapes the nonrandom DSB distribution in ways that are distinct but partially overlapping with previously described contributions of the recombination regulator Zip3. Finally, we uncover a context-dependent role for Tel1 in hotspot competition, in which an artificial DSB hotspot inhibits nearby hotspots. Evidence for Tel1-dependent competition involving strong natural hotspots is also provided. Sixteen samples total: The first 12 are two biological replicate Spo11-oligo maps from each of the following: wild type and tel1 each collected at 4, 5, and 6 hours after meiotic induction; the next 4 are one biological replicate Spo11-oligo map from each of the following: wild type and tel1 bearing an artificial hotspot insertion either on Chr III or on Chr IX.
Project description:ChIP-chip was used to compare DSB factor localization in wild-type and checkpoint mutant strains under S phase checkpoint inducing and uninducing conditions. We analyzed the DNA binding of factors associated with meiotic DNA replication and DSB formation by chromatin immunoprecipitation (ChIP), including; the replicative helicase Mcm2-7 and the meiotic DSB factors Mer2, Rec114 and Mre11. Immunoprecipitated and input DNA samples were differentially labeled and cohybridized to a single microarray. We have included 2-3 biological replicates of each experiment, including one dye swap experiment.