Metabolomic and transcriptomic analysis for rate-limiting metabolic steps in xylose utilization by recombinant Candida utilis
Ontology highlight
ABSTRACT: We previously reported that a recombinant Candida utilis strain expressing a Candida shehatae xylose reductase K275R/N277D, a C. shehatae xylitol dehydrogenase, and xylulokinase from Pichia stipitis produced ethanol from xylose. However, its productivity was low. In this study, metabolomic (CE-TOF MS) and transcriptomic (microarray) analyses were performed to characterize xylose metabolism by the engineered C. utilis and to identify key genetic changes contributing to efficient xylose utilization. Metabolomic analysis revealed that the xylose-fermenting strain accumulated more pentose phosphate pathway intermediates, more NADH, and more glycolytic intermediates upstream of glyceraldehyde 3-phosphate than wild-type. Transcriptomic analysis of the strain grown on xylose indicated a significant increase in expression of genes encoding tricarboxylic acid cycle enzymes, respiratory enzymes, and enzymes involved in ethanol oxidation. To decrease the NADH/NAD+ ratio and increase ethanol yield from the fermentation of xylose, ADH1 encoding NADH-dependent alcohol dehydrogenase was overexpressed. The resultant strain exhibited a 17% increase in ethanol production and a 22% decrease in xylitol accumulation relative to the control.
ORGANISM(S): Cyberlindnera jadinii
PROVIDER: GSE43514 | GEO | 2014/01/01
SECONDARY ACCESSION(S): PRJNA186630
REPOSITORIES: GEO
ACCESS DATA