Project description:The androgen receptor (AR) mediates the action of androgens by binding to androgen-responsive elements (AREs) and subsequently regulating target genes involved in prostate carcinogenesis. The precise locations, true nature, and functional roles of AREs in human prostate cancer are still unknown. Here we redefine AREs by motif-resolution AR chromatin immunoprecipitation-exonuclease (ChIP-exo) assay in human prostate cancer cells and tumors. Surprisingly, we find that, in addition to canonical full-length AREs and half-site-like AREs, a significant portion of the four redefined ARE categories comprises non-canonical full-length AREs. The redefined AREs in enhanced AR binding regions in prostate tumors versus paired non-malignant adjacent tissues regulate a prostate cancer-relevant gene network not only centered on AR, but more interestingly, on novel AR target genes mTOR, BIRC5 and BCL2L1 involved in prostate cancer cell growth and survival. The precise redefinition of AREs has important implications for understanding how AR contributes to prostate carcinogenesis. FOXA1 ChIP-exo
Project description:The androgen receptor (AR) mediates the action of androgens by binding to androgen-responsive elements (AREs) and subsequently regulating target genes involved in prostate carcinogenesis. The precise locations, true nature, and functional roles of AREs in human prostate cancer are still unknown. Here we redefine AREs by motif-resolution AR chromatin immunoprecipitation-exonuclease (ChIP-exo) assay in human prostate cancer cells and tumors. Surprisingly, we find that, in addition to canonical full-length AREs and half-site-like AREs, a significant portion of the four redefined ARE categories comprises non-canonical full-length AREs. The redefined AREs in enhanced AR binding regions in prostate tumors versus paired non-malignant adjacent tissues regulate a prostate cancer-relevant gene network not only centered on AR, but more interestingly, on novel AR target genes mTOR, BIRC5 and BCL2L1 involved in prostate cancer cell growth and survival. The precise redefinition of AREs has important implications for understanding how AR contributes to prostate carcinogenesis.
Project description:The androgen receptor (AR) mediates the action of androgens by binding to androgen-responsive elements (AREs) and subsequently regulating target genes involved in prostate carcinogenesis. The precise locations, true nature, and functional roles of AREs in human prostate cancer are still unknown. Here we redefine AREs by motif-resolution AR chromatin immunoprecipitation-exonuclease (ChIP-exo) assay in human prostate cancer cells and tumors. Surprisingly, we find that, in addition to canonical full-length AREs and half-site-like AREs, a significant portion of the four redefined ARE categories comprises non-canonical full-length AREs. The redefined AREs in enhanced AR binding regions in prostate tumors versus paired non-malignant adjacent tissues regulate a prostate cancer-relevant gene network not only centered on AR, but more interestingly, on novel AR target genes mTOR, BIRC5 and BCL2L1 involved in prostate cancer cell growth and survival. The precise redefinition of AREs has important implications for understanding how AR contributes to prostate carcinogenesis.
Project description:The androgen receptor (AR) mediates the action of androgens by binding to androgen-responsive elements (AREs) and subsequently regulating target genes involved in prostate carcinogenesis. The precise locations, true nature, and functional roles of AREs in human prostate cancer are still unknown. Here we redefine AREs by motif-resolution AR chromatin immunoprecipitation-exonuclease (ChIP-exo) assay in human prostate cancer cells and tumors. Surprisingly, we find that, in addition to canonical full-length AREs and half-site-like AREs, a significant portion of the four redefined ARE categories comprises non-canonical full-length AREs. The redefined AREs in enhanced AR binding regions in prostate tumors versus paired non-malignant adjacent tissues regulate a prostate cancer-relevant gene network not only centered on AR, but more interestingly, on novel AR target genes mTOR, BIRC5 and BCL2L1 involved in prostate cancer cell growth and survival. The precise redefinition of AREs has important implications for understanding how AR contributes to prostate carcinogenesis. To examine the differential AR binding in LNCaP cells before and after androgen stimulation, ChIP-Seq of androgen receptor is performed in LNCaP cells under the two conditions. To profile histone modification status in control LNCaP cells, MNase-Seq is performed with five different antibodies specific to certain histone marks. Each experiment includes two replicates.
Project description:The androgen receptor (AR) mediates the action of androgens by binding to androgen-responsive elements (AREs) and subsequently regulating target genes involved in prostate carcinogenesis. The precise locations, true nature, and functional roles of AREs in human prostate cancer are still unknown. Here we redefine AREs by motif-resolution AR chromatin immunoprecipitation-exonuclease (ChIP-exo) assay in human prostate cancer cells and tumors. Surprisingly, we find that, in addition to canonical full-length AREs and half-site-like AREs, a significant portion of the four redefined ARE categories comprises non-canonical full-length AREs. The redefined AREs in enhanced AR binding regions in prostate tumors versus paired non-malignant adjacent tissues regulate a prostate cancer-relevant gene network not only centered on AR, but more interestingly, on novel AR target genes mTOR, BIRC5 and BCL2L1 involved in prostate cancer cell growth and survival. The precise redefinition of AREs has important implications for understanding how AR contributes to prostate carcinogenesis.
Project description:The androgen receptor (AR) mediates the action of androgens by binding to androgen-responsive elements (AREs) and subsequently regulating target genes involved in prostate carcinogenesis. The precise locations, true nature, and functional roles of AREs in human prostate cancer are still unknown. Here we redefine AREs by motif-resolution AR chromatin immunoprecipitation-exonuclease (ChIP-exo) assay in human prostate cancer cells and tumors. Surprisingly, we find that, in addition to canonical full-length AREs and half-site-like AREs, a significant portion of the four redefined ARE categories comprises non-canonical full-length AREs. The redefined AREs in enhanced AR binding regions in prostate tumors versus paired non-malignant adjacent tissues regulate a prostate cancer-relevant gene network not only centered on AR, but more interestingly, on novel AR target genes mTOR, BIRC5 and BCL2L1 involved in prostate cancer cell growth and survival. The precise redefinition of AREs has important implications for understanding how AR contributes to prostate carcinogenesis.