Whole Genome Characterization of Circulating Tumor Cells Identifies Novel Prognostic Genomic Alterations in Melanoma Metastasis
Ontology highlight
ABSTRACT: Circulating tumor cells (CTCs) are critical in the development of distant organ tumor metastasis, and are associated with advanced cancer stage and poor patient outcome. Here, we present the first genome-wide nucleotide-level characterization of CTCs. Our single-nucleotide polymorphism (SNP) analysis in patients with melanoma involved: 1) global comparative genomic analysis of CTCs and matched regional metastases, 2) identification of key genomic aberrations in CTCs, 3) verification of these target genes in aggressive distant tumor metastases, and 4) evidence of selective expression and functional consequence of CTC-associated genes in melanomas. We report 131 aberrant loci in CTCs that are potentially pro-metastatic, and show that such expression of a 5-marker gene panel (CSMD2, CNTNAP5, FLJ14051, ADAM6, TRPM2) in melanomas confers prognostic utility. Successful treatment of melanoma requires understanding of the metastatic process and identification of patients with tumors most likely to develop aggressive metastatic disease. Melanomas are heterogeneous, and CTCs have long been recognized as vehicles for cancer spread, representing particularly aggressive tumor clones that can evolve into successful clinical metastases. Elucidation of genomic aberrations in CTCs will aid in the development of prognostic biomarkers and therapeutic strategies to target CTCs to prevent or control distant cancer spread. This study provides the first detailed genomic confirmation of the close relation between CTCs and tumor metastases, and illustrates how CTCs can be utilized as a novel approach and rational source for identification of pro-metastatic genes in cancer research.
ORGANISM(S): Homo sapiens
PROVIDER: GSE43934 | GEO | 2014/07/01
SECONDARY ACCESSION(S): PRJNA188208
REPOSITORIES: GEO
ACCESS DATA