Secreted Frizzled-Related Protein 5 is Downregulated in Obesity and Promotes β-Cell Proliferation [30 days]
Ontology highlight
ABSTRACT: Obesity is associated with an increase in β-cell mass in response to the rising demand for insulin. β-cell plasticity is essential to maintaining glucose homeostasis, however, the cellular and molecular mechanisms by which β-cell mass is regulated remain poorly understood. Recently, we described the existence of a crosstalk between the peripancreatic adipose tissue and β-cells as a novel mechanism that participates in the regulation of β-cell plasticity. Here, we identify the secreted frizzled-related protein (Sfrp) 5 as down-regulated in the pancreatic islets of obese rats as well as in the pancreatic islets of human obese patients. Our results demonstrate that the silencing of Sfrp5 induces an increase in β-cell proliferation, which we correlate with the activation of Wnt signaling and of the MAPK and PI3 kinase pathways. Together, these findings expand our understanding of the mechanisms underlying β-cell proliferation under conditions of obesity. Furthermore, this study opens new insights into the specific targeting of Sfrp5 as a novel therapeutic strategy for balancing β-cell mass.
Project description:Obesity is associated with an increase in β-cell mass in response to the rising demand for insulin. β-cell plasticity is essential to maintaining glucose homeostasis, however, the cellular and molecular mechanisms by which β-cell mass is regulated remain poorly understood. Recently, we described the existence of a crosstalk between the peripancreatic adipose tissue and β-cells as a novel mechanism that participates in the regulation of β-cell plasticity. Here, we identify the secreted frizzled-related protein (Sfrp) 5 as down-regulated in the pancreatic islets of obese rats as well as in the pancreatic islets of human obese patients. Our results demonstrate that the silencing of Sfrp5 induces an increase in β-cell proliferation, which we correlate with the activation of Wnt signaling and of the MAPK and PI3 kinase pathways. Together, these findings expand our understanding of the mechanisms underlying β-cell proliferation under conditions of obesity. Furthermore, this study opens new insights into the specific targeting of Sfrp5 as a novel therapeutic strategy for balancing β-cell mass.
Project description:Obesity is associated with an increase in β-cell mass in response to the rising demand for insulin. β-cell plasticity is essential to maintaining glucose homeostasis, however, the cellular and molecular mechanisms by which β-cell mass is regulated remain poorly understood. Recently, we described the existence of a crosstalk between the peripancreatic adipose tissue and β-cells as a novel mechanism that participates in the regulation of β-cell plasticity. Here, we identify the secreted frizzled-related protein (Sfrp) 5 as down-regulated in the pancreatic islets of obese rats as well as in the pancreatic islets of human obese patients. Our results demonstrate that the silencing of Sfrp5 induces an increase in β-cell proliferation, which we correlate with the activation of Wnt signaling and of the MAPK and PI3 kinase pathways. Together, these findings expand our understanding of the mechanisms underlying β-cell proliferation under conditions of obesity. Furthermore, this study opens new insights into the specific targeting of Sfrp5 as a novel therapeutic strategy for balancing β-cell mass. Adult male Wistar rats (Charles River Laboratories, Wilmington, MA), 7 wk old (weighing 225–250 g), were caged individually in a 12-h light, 12-h dark cycle in a temperature- and humidity-controlled environment. Animals were divided into two dietary sets for 10 days. One group was fed with standard chow diet (supplying 8% of calories as fat; type AO4 from Panlab, Barcelona, Spain). The second group was fed with a cafeteria diet (66% of calories as fat), as previously described (Endocrinology 2012;153:177-87). Pancreatic islets were isolated through collagenase perfusion of the pancreas, Histopaque gradient and hand-picking under microscopic guidance. Ten micrograms of total RNA from islets were converted into cRNA, biotinylated, fragmented, and hybridized to GeneChip Rat Genome 230 2.0 (Affymetrix, Santa Clara, CA). Ten microarrays were hybridized, five with independent samples coming from rats fed with standard chow (lean group) and five with independent samples coming from rats fed with the cafeteria diet (obese group).
Project description:Obesity is associated with an increase in ?-cell mass in response to the rising demand for insulin. ?-cell plasticity is essential to maintaining glucose homeostasis, however, the cellular and molecular mechanisms by which ?-cell mass is regulated remain poorly understood. Recently, we described the existence of a crosstalk between the peripancreatic adipose tissue and ?-cells as a novel mechanism that participates in the regulation of ?-cell plasticity. Here, we identify the secreted frizzled-related protein (Sfrp) 5 as down-regulated in the pancreatic islets of obese rats as well as in the pancreatic islets of human obese patients. Our results demonstrate that the silencing of Sfrp5 induces an increase in ?-cell proliferation, which we correlate with the activation of Wnt signaling and of the MAPK and PI3 kinase pathways. Together, these findings expand our understanding of the mechanisms underlying ?-cell proliferation under conditions of obesity. Furthermore, this study opens new insights into the specific targeting of Sfrp5 as a novel therapeutic strategy for balancing ?-cell mass. Adult male Wistar rats (Charles River Laboratories, Wilmington, MA), 7 wk old (weighing 225–250 g), were caged individually in a 12-h light, 12-h dark cycle in a temperature- and humidity-controlled environment. Animals were divided into two dietary sets for 30 days. One group was fed with standard chow diet (supplying 8% of calories as fat; type AO4 from Panlab, Barcelona, Spain). The second group was fed with a cafeteria diet (66% of calories as fat), as previously described (Endocrinology 2012;153:177-87). Pancreatic islets were isolated through collagenase perfusion of the pancreas, Histopaque gradient and hand-picking under microscopic guidance. Ten micrograms of total RNA from islets were converted into cRNA, biotinylated, fragmented, and hybridized to GeneChip Rat Genome 230 2.0 (Affymetrix, Santa Clara, CA). Ten microarrays were hybridized, five with independent samples coming from rats fed with standard chow (lean group) and five with independent samples coming from rats fed with the cafeteria diet (obese group).
Project description:Changes in the secretion profile of visceral-pancreatic white adipose tissue (pWAT) due to diet-induced obesity are partially responsible for increased beta cell replication, suggesting that a crosstalk between pWAT and beta cells may play a role in regulating beta cell plasticity. The molecular mechanisms underlying this cross-talk are still not fully understood. The aim of this study was to integrate transcriptomic, proteomic and metabolomic data to unravel the cross-talk between adipose tissue and pancreatic islets during evolution of obesity. Pancreatic islets from control lean and cafeteria diet fed obese rats were obtained. RNA was extracted and processed for further hybridization on Affymetrix microarrays (GeneChip Rat Genome 230 2.0 (Affymetrix, Santa Clara, CA)).
Project description:Changes in the secretion profile of visceral-pancreatic white adipose tissue due to diet-induced obesity are partially responsible for increased beta cell replication, suggesting that a crosstalk between pWAT and beta cells may play a role in regulating beta cell plasticity. The molecular mechanisms underlying this cross-talk are still not fully understood. The aim of this study was to integrate transcriptomic, proteomic and metabolomic data to unravel the cross-talk between adipose tissue and pancreatic islets during evolution of obesity. Adipose tissue from control lean and obese rats were obtained. RNA was extracted and processed for further hybridization on Affymetrix microarrays (GeneChip Rat Genome 230 2.0 (Affymetrix, Santa Clara, CA)).
Project description:The progression towards type 2 diabetes depends on the success of the allostatic response of the pancreatic beta cells to synthesise and secrete enough insulin to compensate for insulin resistance. The endocrine pancreas is a plastic tissue able to expand or regress in response to the requirements imposed by physio and pathological states such as pregnancy, obesity or ageing. The mechanisms, mediating beta cell mass expansion in these scenarios are not well defined. We have recently showed that beta cell mass failed to expand in ob/ob mice with genetic ablation of PPARγ2, a mouse model known as the POKO mouse. This phenotype contrasted with the appropriate expansion of the beta cell mass observed in their obese littermate ob/ob mice. Here we investigate PPAR gamma dependent transcriptional responses occurring during early stages of the adaptation of beta cells to insulin resistance. As it could be expected we have identified genes known to regulate proliferation and survival signals of the beta cells. Moreover we have also identified new pathways induced in ob/ob islets that fail to do so in POKO islets. Our data suggest that the expansion of beta cell mass observed in ob/ob islets is associated with activation of immune response and is missing in POKO islets. Other PPARγ dependent differentially regulated pathways include cholesterol biosynthesis, apoptosis through TGF-β signaling and decreased oxidative phosphorylation. In this study, we used gene expression arrays to investigate differences between four experimental classes by pairs
Project description:The NF-κB pathway is a master regulator of inflammatory processes and is implicated in insulin resistance and pancreatic beta cell dysfunction in the metabolic syndrome. While canonical NF-κB signaling is well studied, there is little information on the divergent non-canonical NF-κB pathway in the context of pancreatic islet dysfunction in diabetes. Here, we demonstrate that pharmacological activation of the non-canonical NF-κB inducing kinase (NIK) disrupts glucose homeostasis in zebrafish in vivo. Further, we identify NIK as a critical negative regulator of beta cell function as pharmacological NIK activation results in impaired glucose-stimulated insulin secretion in mouse and human islets. NIK levels are elevated in pancreatic islets isolated from diet-induced obese (DIO) mice, which exhibit increased processing of non-canonical NF-κB components p100 to p52, and accumulation of RelB. Tumor necrosis factor α (TNFα) and receptor activator of NF-κB ligand (RANKL), two ligands associated with diabetes, induce NIK in islets. Mice with constitutive beta cell intrinsic NIK activation present impaired insulin secretion with DIO. NIK activation triggers the non-canonical NF-κB transcriptional network to induce genes identified in human type 2 diabetes genome-wide association studies linked to beta cell failure. These studies reveal that NIK contributes a central mechanism for beta cell failure in diet-induced obesity. We identify a role for Nuclear Factor inducing κB (NIK) in pancreatic beta cell failure. NIK activation disrupts glucose homeostasis in zebrafish in vivo and impairs glucose-stimulated insulin secretion in mouse and human islets in vitro. NIK activation also perturbs beta cell insulin secretion in a diet-induced obesity mouse model. These studies reveal that NIK contributes a central mechanism for beta cell failure in obesity. To uncover the role of NIK in pancreatic beta cells, we performed a gene expression microarray analysis comparing pancreatic islets with constitutive beta cell intrinsicNIK activation from the 16 week old mice (beta cell specific TRAF2 and TRAF2 knockout mice) to their controls (n=3 per group).
Project description:The progression towards type 2 diabetes depends on the success of the allostatic response of the pancreatic beta cells to synthesise and secrete enough insulin to compensate for insulin resistance. The endocrine pancreas is a plastic tissue able to expand or regress in response to the requirements imposed by physio and pathological states such as pregnancy, obesity or ageing. The mechanisms, mediating beta cell mass expansion in these scenarios are not well defined. We have recently showed that beta cell mass failed to expand in ob/ob mice with genetic ablation of PPARγ2, a mouse model known as the POKO mouse. This phenotype contrasted with the appropriate expansion of the beta cell mass observed in their obese littermate ob/ob mice. Here we investigate PPAR gamma dependent transcriptional responses occurring during early stages of the adaptation of beta cells to insulin resistance. As it could be expected we have identified genes known to regulate proliferation and survival signals of the beta cells. Moreover we have also identified new pathways induced in ob/ob islets that fail to do so in POKO islets. Our data suggest that the expansion of beta cell mass observed in ob/ob islets is associated with activation of immune response and is missing in POKO islets. Other PPARγ dependent differentially regulated pathways include cholesterol biosynthesis, apoptosis through TGF-β signaling and decreased oxidative phosphorylation.
Project description:Insulin resistance is necessary but not sufficient for the development of type 2 diabetes. Diabetes results when pancreatic beta-cells fail to compensate for insulin resistance by increasing insulin production through an expansion of beta-cell mass or increased insulin secretion. Communication between insulin target tissues and beta-cells may initiate this compensatory response. Correlated changes in gene expression between tissues can provide evidence for such intercellular communication. We profiled gene expression in six tissues of mice from an obesity-induced diabetes-resistant and a diabetes-susceptible strain before and after the onset of diabetes. We studied the correlation structure of mRNA abundance and identified 105 co-expression gene modules. We provide an interactive gene network model showing the correlation structure between the expression modules within and among the six tissues. This resource also provides a searchable database of gene expression profiles for all genes in six tissues in lean and obese diabetes-resistant and diabetes-susceptible mice, at 4 and 10 weeks of age. A cell cycle regulatory module in islets predicts diabetes susceptibility. The module predicts islet replication; we found a strong correlation between ^2 H_2 O incorporation into islet DNA /in vivo/ and the expression pattern of the cell cycle module. This pattern is highly correlated with that of several individual genes in insulin target tissues, including IGF2, which has been shown to promote beta-cell proliferation, suggesting that these genes may provide a link between insulin resistance and beta-cell proliferation. Keywords: time course, mouse strain comparison, effect of obesity, Type 2 diabetes is a disorder that involves an increased demand for insulin brought about by insulin resistance, together with a failure to compensate with sufficient insulin production. Although Insulin resistance occurs in most obese individuals, diabetes is generally forestalled through compensation with increased insulin. This increase in insulin occurs through an expansion of beta-cell mass and/or increased insulin secretion by individual beta-cells. Failure to compensate for insulin resistance leads to type 2 diabetes. One way to understand the pathophysiology of diabetes is to examine the coordinate changes in gene expression that occur in insulin-responsive tissues and pancreatic islets in obese animals that either compensate for insulin resistance or progress to type 2 diabetes. In each case, there are groups of genes that undergo changes in expression in a highly correlated fashion. By identifying groups of correlated transcripts (gene expression modules) during the compensation and development of diabetes, we can gain insight into potential pathways and regulatory networks in obesity-induced diabetes. We study two strains of mice that differ in obesity-induced diabetes susceptibility. In this study, we surveyed gene expression in six tissues of lean and obese C57BL/6 (B6) and BTBR mice aged 4 wks and 10 wks. B6 mice remain essentially non-diabetic at all ages, irrespective of obesity. When obese, BTBR mice become severely diabetic by 10 weeks of age. By analyzing the correlation structure of the genes under three contrast conditions, obesity, strain, and age, we identified gene expression modules associated with the onset of diabetes and provide an interactive co-expression network model of type 2 diabetes. We found a key module that is comprised of cell cycle regulatory genes. In the islet, the expression profile of these transcripts accurately predicts diabetes and is highly correlated with islet cell proliferation.
Project description:Changes in the secretion profile of visceral-pancreatic white adipose tissue (pWAT) due to diet-induced obesity are partially responsible for increased beta cell replication, suggesting that a crosstalk between pWAT and beta cells may play a role in regulating beta cell plasticity. The molecular mechanisms underlying this cross-talk are still not fully understood. The aim of this study was to integrate transcriptomic, proteomic and metabolomic data to unravel the cross-talk between adipose tissue and pancreatic islets during evolution of obesity.