SMC5/6 facilitates joint molecule resolution and stepwise loss of cohesin to promote meiotic chromosome segregation
Ontology highlight
ABSTRACT: During meiosis, Structural Maintenance of Chromosome (SMC) complexes underpin two fundamental features of meiosis: homologous recombination and chromosome segregation. While meiotic functions of the cohesin and condensin complexes have been delineated, the role of the third SMC complex, Smc5/6, remains enigmatic. Diminished Smc5/6 function causes severe defects in nuclear division, but the underlying causes of these defects remain unclear. Here we identify specific, essential meiotic functions for the Smc5/6 complex in homologous recombination and regulation of cohesin. We show that Smc5/6 is enriched at centromeres and cohesin-association sites where it regulates sister-chromatid cohesion and the timely removal of cohesin from chromosomal arms, respectively. Smc5/6 also localizes to recombination hotspots, where it promotes normal formation and resolution of joint-molecule intermediates. Furthermore, we find that Smc5/6 specifically promotes resolution of joint molecules via the XPF-family endonuclease, Mus81-Mms4Eme1. We propose that Smc5/6 acts as a chaperone for ‘mitotic’-like recombination processes during meiosis.
ORGANISM(S): Saccharomyces cerevisiae
PROVIDER: GSE44852 | GEO | 2013/12/27
SECONDARY ACCESSION(S): PRJNA192193
REPOSITORIES: GEO
ACCESS DATA