Genome-scale methylation changes induced by photoperiods in Nasonia vitripennis
Ontology highlight
ABSTRACT: Seasonal photoperiodic changes have strong impact on development in Nasonia vitripennis. Here, Using high-throughput Reduced Representation Bisulfite Sequencing (RRBS) and single-molecule-based sequencing, we generated DNA methylation maps of female wasps maintained in long vs short day. We have identified differential methylated loci that encode the photoperiodic change.
Project description:Seasonal photoperiodic changes have strong impact on development in Nasonia vitripennis. Here, Using high-throughput Reduced Representation Bisulfite Sequencing (RRBS) and single-molecule-based sequencing, we generated DNA methylation maps of female wasps maintained in long vs short day. We have identified differential methylated loci that encode the photoperiodic change. analysis of DNA methylation in female wasps maintained in long vs short day, using RRBS followed by Illumina sequencing
Project description:We quantified genome-wide total and allele-specific expression in two non-social parasitoids wasp species Nasonia vitripennis and Nasonia giraulti and their reciprocal F1 hybrids. No parent-of-origin effect in allelic expression was found for >8,000 informative genes, suggesting lack of genomic imprinting in adult Nasonia. Gene expression divergence between Nv and Ng could be attributed to both significant cis- and trans- regulatory changes during evolution.