MRNAs and miRNAs expression data from AOM/DSS, AOM, DSS and control mouse colon epithelial tissue at day100 when tumor formed in AOM/DSS bearing mice --- mRNA expression data
Ontology highlight
ABSTRACT: To find out which mRNAs are significantly differential expression and potentially involved in the process of inflammation promoting carcinogenesis of colorectal cancer (CRC). We established a colitis-associated CRC (AOM/DSS, Azoxymethane/Dextran sulfate sodium salt) model, colitis (DSS) model and high dose carcinogen (AOM, about 5 times AOM amount given than AOM/DSS model) model. At day 100 when tumor formed in AOM/DSS bearing mice (colitis-associated CRC mice) but no tumor was found in AOM (high dose carcinogen) and DSS model, we employed whole genome microarray expression profiling as a discovery platform to identify genes with the potential to involve in the progression of CRC promoted by inflammation.
Project description:To find out which miRNAs are significantly differential expression and potentially involved in the process of inflammation promoting carcinogenesis of colorectal cancer (CRC). We established a colitis-associated CRC (AOM/DSS, Azoxymethane/Dextran sulfate sodium salt) model, colitis (DSS) model and high dose carcinogen (AOM, about 5 times AOM amount given than AOM/DSS model) model. At day 100 when tumor formed in AOM/DSS bearing mice (colitis-associated CRC mice) but no tumor was found in AOM (high dose carcinogen) and DSS model, we employed miRNA microarray as a discovery platform to identify genes with the potential to involve in the progression of CRC promoted by inflammation. 5-7 weeks female BALB/c mice, (1) AOM/DSS group: AOM 12.5mg/kg i.p. at day 1, DSS drinking 5d/21dx3circles from day 5; (2) AOM group: AOM 10mg/kg i.p. 1/weekx6 from day 1; (3) DSS group: DSS drinking 5d/21dx3circles from day 5. The distal colon epithelial tissues were collected at day100 when tumor formed in AOM/DSS bearing mice. The miRNA microarray experiments were performed together.
Project description:To find out which mRNAs are significantly differential expression and potentially involved in the process of inflammation promoting carcinogenesis of colorectal cancer (CRC). We established a colitis-associated CRC (AOM/DSS, Azoxymethane/Dextran sulfate sodium salt) model, colitis (DSS) model and high dose carcinogen (AOM, about 5 times AOM amount given than AOM/DSS model) model. At day 100 when tumor formed in AOM/DSS bearing mice (colitis-associated CRC mice) but no tumor was found in AOM (high dose carcinogen) and DSS model, we employed whole genome microarray expression profiling as a discovery platform to identify genes with the potential to involve in the progression of CRC promoted by inflammation. 5-7 weeks female BALB/c mice, (1) AOM/DSS group: AOM 12.5mg/kg i.p. at day 1, DSS drinking 5d/21dx3circles from day 5; (2) AOM group: AOM 10mg/kg i.p. 1/weekx6 from day 1; (3) DSS group: DSS drinking 5d/21dx3circles from day 5. The distal colon epithelial tissues were collected at day100 when tumor formed in AOM/DSS bearing mice. The whole genome microarray expression profiling experiments were performed together.
Project description:To find out which miRNAs are significantly differential expression and potentially involved in the process of inflammation promoting carcinogenesis of colorectal cancer (CRC). We established a colitis-associated CRC (AOM/DSS, Azoxymethane/Dextran sulfate sodium salt) model, colitis (DSS) model and high dose carcinogen (AOM, about 5 times AOM amount given than AOM/DSS model) model. At day 100 when tumor formed in AOM/DSS bearing mice (colitis-associated CRC mice) but no tumor was found in AOM (high dose carcinogen) and DSS model, we employed miRNA microarray as a discovery platform to identify genes with the potential to involve in the progression of CRC promoted by inflammation.
Project description:Purpose: Next-generation sequencing (NGS) has revolutionized systems-based analysis of cellular pathways. The goals of this study are using transcriptome profiling (RNA-seq) to evaluate the effects of anti-S100a9 antibody on the global transcriptome of the colon tissues of the AOM/DSS mouse model (a model that mimics the human colitis-associated colon cancer development). Methods: 36 five-week-old male ICR mice were randomized divided into three groups: control (i.e. no AOM/DSS and antibody treatment), AOM/DSS+IgG Ab (1.5 mg/kg), and AOM/DSS+anti-S100a9 Ab (1.5 mg/kg). Mice were intraperitoneal injected with a single dose of 10 mg/kg azoxymethane (AOM) (A5486; Sigma) on day 1. One week after the AOM injection, mice were given three cycles of DSS (cycle 1: 2%, 7 days; cycle 2: 1.5%, 5 days; and cycle 3: 1.5%, 5 days, DSS: 36–50 kDa; MP Biomedicals, CA, USA) in their drinking water, and then distilled water until the end of the experiment. Antibodies were administrated intravenously every two days during the three cycles of DSS treatment. Mice were sequentially killed randomly at the end of the 18th week, and at least five mice were killed for each group at each time point. RNAs were extracted by Trizol and sequenced by Solexa high-throughput sequencing service (Oebiotech, Shanghai, China). Data were extracted and normalized according to the manufacturer’s standard protocol.Each group has three mices' colon tissues be tested. Results: Log-fold changes of up- or down-regulated mRNAs between the control and experiment group were selected with a significance threshold of p<0.05. There are 1017 mRNAs were up-regulated and 815 were down-regulated in “AOM/DSS+IgG Ab" group comparing to “control" group. There are 385 mRNAs were up-regulated and 163 were down-regulated in “AOM/DSS+anti-S100a9 Ab" group comparing to “control" group. There are 1314 mRNAs were up-regulated and 968 were down-regulated in “AOM/DSS+anti-S100a9 Ab" group comparing to “AOM/DSS+IgG Ab". Conclusions: Our study describes the global transciptome changes of colon tissues of the AOM/DSS mouse model induced by anti-S100a9 antibody treatment.
Project description:Purpose: Next-generation sequencing (NGS) has revolutionized systems-based analysis of cellular pathways. The goals of this study are to analysis NGS-derived transcriptome profiling (RNA-seq) in DSS induced chronic inflammation, AOM/DSS induced colitis-associated colorectal tumorigenesis and organoids isolation from colitis-associated colorectal tumorigenesis Methods: DSS, AOM/DSS and organoids mRNA profiles of wild-type (WT) and RING Finger 3 (RNF138−/−) mice were generated by deep sequencing, in triplicate, using Illumina HiSeq 2500. The sequence reads were trimmed for low-quality sequence, then mapped to mm10 whole genome using STAR v2.6.1d Results: Using an optimized data analysis workflow, the padj <0.05 and fold change >2 were refered as differential expression. There are 987, 2649 and 2373 differential genes were found in RNF138-/- compared with Wild Type in DSS, AOM/DSS and organoids, respectively Conclusions: Our study revealed NFκB pathway is the main activation pathway regulated by RNF138 loss
Project description:In humans with UC, low-grade dysplasia also develops predominantly in the distal colon, progresses more rapidly to neoplasia than proximal colon low-grade dysplasia and associates with worse patient prognosis. In a mouse model of colitis-associated carcinogenesis induced by administration of the mutagen AOM and the luminal toxin DSS, tumors also develop exclusively in the distal part of the large intestine. We monitored global changes in the transcriptome of mouse proximal and distal colon during exposure to AOM/DSS with the aim to define biological pathways and processes that characterize regional responses of the large intestine to colitis-associated carcinogenesis.
Project description:The impact of the antiinflammatory agent 5-aminosalicylic acid (5-ASA) on the risk for colitis-associated colorectal cancer remains controversial. The chemopreventive activity of 5-ASA was evaluated in the Swiss Webster model of azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced colitis-associated neoplasia. Mice were injected with AOM (7.4 mg/kg i.p.) and randomized to receive either vehicle or 5-ASA (75mg/kg) for the remainder of the study. Only untreated animals were used in this array. DSS treatment began at 9 weeks of age and continued for 3 cycles. At the time of sacrifice (18 weeks of age), the entire colon and rectum were processed for histopathologic examination and microarray profiling. For information regarding the histopathological analysis, refer to Clapper ML, Gary MA, Coudry RA, Litwin S, Chang WC, Devarajan K, Lubet RA, Cooper HS. 5-aminosalicylic acid inhibits colitis-associated colorectal dysplasias in the mouse model of azoxymethane/dextran sulfate sodium-induced colitis. Inflamm Bowel Dis. 2008 Oct;14(10):1341-7. doi: 10.1002/ibd.20489. PMID: 18452197.
Project description:Gamma-delta T cells prevent CRC. To understand the criticial role of Gamma-delta T cells in CRC, AOM-DSS tumors from mice lacking TCRγδ and with TCRγδ cells were used to isolate epithelial cells to study gene expression by bulk RNA sequencing.
Project description:The tumor microenvironment plays a key role in the pathogenesis of colorectal tumors and contains various cell types including epithelial, immune, and mesenchymal cells. Characterization of the interactions between these cell types is necessary for revealing the complex nature of tumors. In this study, we used single-cell RNA-seq (scRNA-seq) to compare the tumor microenvironments between a mouse model of sporadic colorectal adenoma (Lrig1CreERT2/+;Apc2lox14/+) and a mouse model of inflammation-driven colorectal cancer induced by azoxymethane and dextran sodium sulfate (AOM/DSS). While both models develop tumors in the distal colon, we found that the two tumor types have distinct microenvironments. AOM/DSS tumors have an increased abundance of two populations of cancer-associated fibroblasts (CAFs) compared with APC tumors, and we revealed their divergent spatial association with tumor cells using multiplex immunofluorescence (MxIF) imaging. We also identified a unique squamous cell population in AOM/DSS tumors, whose origins were distinct from anal squamous epithelial cells. These cells were in higher proportions upon administration of a chemotherapy regimen of 5-Fluorouracil/Irinotecan. We used computational inference algorithms to predict cell-cell communication mediated by ligand-receptor interactions and downstream pathway activation, and identified potential mechanistic connections between CAFs and tumor cells, as well as CAFs and squamous epithelial cells. This study provides important preclinical insight into the microenvironment of two distinct models of colorectal tumors and reveals unique roles for CAFs and squamous epithelial cells in the AOM/DSS model of inflammation-driven cancer. This series comprises the drug treatment set as well as the fibroblast enrichment set.
Project description:Purpose : The goals of this study are to compare NGS-derived transcriptome profiling (RNA-seq) of colon samples of intestinal epithelial cell specific Axin1 Knockout mice and WT controls that were submitted to DSS-induced colitis and AOM/DSS-induced colorectal carcinogenesis. Methods : DSS-induced colitis was performed on Axin1flfl (WT) and Vil CreERT2;Axin1fl/fl (Axin1KOΔIEC) mice by giving 3% DSS dissolved in drinking water for 7 days and subsequently placed on regular water for recovery before sacrifice at Day 7 and D13. Methods : AOM/DSS-induced colorectal tumorigenesis was performed on Axin1flfl (WT) and Vil CreERT2;Axin1fl/fl (Axin1KOΔIEC) mice that were sacrificed at day 100 post-AOM injection to collect colorectal tumors. Methods : Colonic mRNA profiles of WT and Axin1KOΔIEC mice were generated by deep sequencing using Illumina NextSeq 500 instrument (150base-lengths read V2 chemistry in a paired-end mode)